Comment on "The ligand polyhedral model approach to the mechanism of complete carbonyl exchange in [Rh4(CO)12] and [Rh6(CO)16]" by Brian F. G. Johnson, Dalton Transactions, 2015, 44, DOI: 10.1039/C4DT03360D.

Experimental results (recent IR, DFT calculations and modern multinuclear NMR measurements on Rh-containing clusters, together with earlier VT multinuclear NMR measurements) show that the use of the Ligand Polyhedral Model (LPM) to provide a general mechanism for ligand fluxionality in Transition Metal Carbonyl Clusters (TMCCs) in solution cannot be sustained; instead there are numerous examples of only partial CO-migration over either part or sometimes the whole of the Rh-polyhedron as well as rhodium and carbonyl polyhedral rearrangements of Rh9- and Rh10-TMCCs containing an interstitial P when, in the high temperature limiting spectra, all the metals and all the carbonyls become equivalent and show time-averaged values of (1)J(Rh-P) and (2)J(P-CO) respectively.

[1]  B. Johnson The ligand polyhedral model approach to the mechanism of complete carbonyl exchange in [Rh4(CO)12] and [Rh6(CO)16]. , 2015, Dalton transactions.

[2]  W. Griffith,et al.  In memory of Lord Jack Lewis. , 2015, Dalton Transactions.

[3]  H. Schaefer,et al.  Homoleptic tetranuclear rhodium carbonyls: comparison with their iridium analogues. , 2015, The journal of physical chemistry. A.

[4]  I. Guzei,et al.  Sixty-Year Saga (1952–2013) of the Solid-State Structure of Triiron Dodecacarbonyl , 2013, Journal of Cluster Science.

[5]  H. Schaefer,et al.  Remarkable aspects of unsaturation in trinuclear metal carbonyl clusters: the triiron species Fe3(CO)n (n = 12, 11, 10, 9). , 2006, Journal of the American Chemical Society.

[6]  C. Jacob,et al.  CO fluxionality in Rh4(CO)12 and Rh6(CO)16 , 2006 .

[7]  Marc Garland,et al.  Spectral resolution of fluxional organometallics. The observation and FTIR characterization of all-terminal [Rh4(CO)12]. , 2005, Dalton transactions.

[8]  R. Hemley,et al.  High pressure study of Ru3(CO)12 by X-ray diffraction, Raman, and infrared spectroscopy. , 2004, Inorganic chemistry.

[9]  S. Tunik,et al.  Stereochemical nonrigidity of [Rh6(CO)15L] clusters in solution , 2001 .

[10]  B. Johnson Mechanism of the low-energy fluxional process in[Fe3(CO)12 - nLn] [n = 0–2(3)]: a rebuttal , 1997 .

[11]  B. Mann Mechanism of the low-energy fluxional process in[Fe3(CO)12-nLn] (n = 0–2): aperspective , 1997 .

[12]  D. Braga,et al.  A variable temperature study of Ru3(CO)12 in the solid state and the generation of alternative crystal structures , 1995 .

[13]  R. Goodfellow,et al.  Ligand fluxionality in close-packed rhodium carbonyl clusters , 1986 .

[14]  J. Vidal,et al.  Multinuclear variable-temperature nuclear magnetic resonance study of rhodium carbonyl clusters containing encapsulated heteroatoms: ligand and metal polyhedral rearrangements , 1983 .

[15]  B. Heaton,et al.  An NMR study of carbide clusters , 1981 .

[16]  B. T. Heaton,et al.  Fluxional behaviour of Rh4(CO)8{P(OPh)3}4: A 13C-{31P, 1H} NMR study , 1980 .

[17]  P. Chini,et al.  13C{103Rh} nuclear magnetic resonance of [Rh7(CO)16]3− , 1979 .

[18]  M. Churchill,et al.  Crystal structure of tetrairidium dodecacarbonyl, Ir4(CO)12. An unpleasant case of disorder , 1978 .

[19]  R. Benfield,et al.  Structures of binary carbonyls and related compounds. Part 1. A new approach to fluxional behaviour , 1978 .

[20]  F. Hollander,et al.  An accurate redetermination of the structure of triruthenium dodecacarbonyl, Ru3(CO)12 , 1977 .

[21]  B. Deboer,et al.  Structural studies on polynuclear osmium carbonyl hydrides. 1. Crystal structures of the isomorphous species undecacarbonyldihydrotriosmium and dodecacarbonyltriosmium. Role of an equatorial .mu.2-bridging hydride ligand in perturbing the arrangement of carbonyl ligands in a triangular cluster , 1977 .

[22]  M. Manassero,et al.  Synthesis and x-ray characterization of Rh4(CO)8 [P(OPh)3]4 and Rh6(CO)12[P(OPh)3]4 , 1977 .

[23]  R. Goodfellow,et al.  Hydrogen and carbonyl scrambling in [Rh13(CO)24H5 –n]n–(n= 2 and 3); a unique example of hydrogen tunnelling , 1977 .

[24]  Jack Lewis,et al.  Variable-temperature carbon-13 nuclear magnetic resonance spectra of phosphine-substituted dodecarbonyl-triangulo-triosmium , 1976 .

[25]  B. Johnson The structures of simple binary carbonyls , 1976 .

[26]  C. Wei Structural analyses of tetracobalt dodecacarbonyl and tetrarhodium dodecacarbonyl. Crystallographic treatments of a disordered structure and a twinned composite , 1969 .

[27]  A. Rae,et al.  The crystal structure of ruthenium carbonyl, Ru3(CO)12 , 1968 .

[28]  L. F. Dahl,et al.  The Molecular and Crystal Structure of Os3(CO)12 , 1962 .

[29]  L. F. Dahl,et al.  TRINUCLEAR OSMIUM AND RUTHENIUM CARBONYLS AND THEIR IDENTITIES WITH PREVIOUSLY REPORTFD Os2(CO)9 AND Ru2(CO)9 , 1961 .