Three-wave approximation for the modal field inside high-index dielectric rods of hybrid plasmonic waveguides

Abstract An approximate three-wave model is suggested for describing the modal field inside the high-index dielectric rod of a hybrid plasmonic waveguide. An evanescent wave, an uniform wave and a propagating wave are considered along the direction perpendicular to the metal surface. The superposition of these three waves forms the modal field inside the high-index rod. Through numerical tests, we find that this model is highly valid for a large range of waveguide sizes.

[1]  Xiaohan Sun,et al.  Proposal for Compact Polarization Splitter Using Asymmetrical Three-Guide Directional Coupler , 2015, IEEE Photonics Technology Letters.

[2]  J. Stewart Aitchison,et al.  A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes , 2014 .

[3]  Limin Tong,et al.  Nanowire plasmonic waveguides, circuits and devices , 2013 .

[4]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[5]  Lin Zhu,et al.  Modal Properties of Hybrid Plasmonic Waveguides for Nanolaser Applications , 2010, IEEE Photonics Technology Letters.

[6]  Vien Van,et al.  Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. , 2010, Optics express.

[7]  Metal-insulator-metal plasmonic waveguide for low-distortion slow light at telecom frequencies , 2014 .

[8]  P. Berini Long-range surface plasmon polaritons , 2009 .

[9]  Limin Tong,et al.  Nanowaveguides and couplers based on hybrid plasmonic modes , 2010 .

[10]  Er-Ping Li,et al.  Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components , 2010 .

[11]  W. Freude,et al.  Dispersion Relation and Loss of Subwavelength Confined Mode of Metal-Dielectric-Gap Optical Waveguides , 2009, IEEE Photonics Technology Letters.

[12]  Yunsong Zhao,et al.  Coaxial hybrid plasmonic nanowire waveguides , 2010 .

[13]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[14]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[15]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[16]  Zheng Zheng,et al.  Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. , 2009, Optics express.

[17]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[18]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[19]  G. Lo,et al.  Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide , 2011 .

[20]  Lech Wosinski,et al.  Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. , 2012, Optics Letters.

[21]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[22]  Sailing He,et al.  A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. , 2009, Optics express.

[23]  Wei-Ping Huang,et al.  Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. , 2012, Optics express.

[24]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[25]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[26]  Da Teng,et al.  Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[28]  Lin Chen,et al.  Enhanced Optical Forces by Hybrid Long-Range Plasmonic Waveguides , 2013, Journal of Lightwave Technology.

[29]  Er-Ping Li,et al.  Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale , 2011 .

[30]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[31]  Mo Li,et al.  Enhanced optical forces in integrated hybrid plasmonic waveguides. , 2013, Optics express.

[32]  Stefan A. Maier,et al.  Ultrafast plasmonic nanowire lasers near the surface plasmon frequency , 2014, Nature Physics.

[33]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[34]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[35]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[36]  Yan-qing Lu,et al.  Hybrid plasmonic waveguide in a metal V-groove , 2014 .

[37]  J. Aitchison,et al.  Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. , 2010, Optics express.

[38]  Daru Chen,et al.  Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light. , 2010, Applied optics.

[39]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[40]  Richard Soref,et al.  Sub-wavelength Plasmonic Modes in a Conductor-gap-dielectric System with a Nanoscale Gap References and Links , 2022 .

[41]  Xiaoliu Zuo,et al.  Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate. , 2011, Optics letters.

[42]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[43]  Byoungho Lee,et al.  Review on subwavelength confinement of light with plasmonics , 2010 .

[44]  Xiang Zhang,et al.  Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. , 2011, Nano letters.