Shortest monotone descent path problem in polyhedral terrain

Given a polyhedral terrain with n vertices, the shortest monotone descent path problem deals with finding the shortest path between a pair of points, called source (s) and destination (t) such that the path is constrained to lie on the surface of the terrain, and for every pair of points p=(x(p),y(p),z(p)) and q=(x(q),y(q),z(q)) on the path, if dist(s,p)=z(q), where dist(s,p) denotes the distance of p from s along the aforesaid path. This is posed as an open problem by Berg and Kreveld [M. de Berg, M. van Kreveld, Trekking in the Alps without freezing or getting tired, Algorithmica 18 (1997) 306-323]. We show that for some restricted classes of polyhedral terrain, the optimal path can be identified in polynomial time.

[1]  Mark de Berg,et al.  Trekking in the Alps Without Freezing or Getting Tired , 1993, ESA.

[2]  Jörg-Rüdiger Sack,et al.  Approximating Shortest Paths on Weighted Polyhedral Surfaces , 2001, Algorithmica.

[3]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[4]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[5]  Franco P. Preparata,et al.  A New Approach to Planar Point Location , 1981, SIAM J. Comput..

[6]  Sanjiv Kapoor,et al.  Efficient computation of geodesic shortest paths , 1999, STOC '99.

[7]  Zheng Sun,et al.  An Efficient Approximation Algorithm for Weighted Region Shortest Path Problem , 2000 .

[8]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[9]  Jörg-Rüdiger Sack,et al.  Approximation algorithms for geometric shortest path problems , 2000, STOC '00.

[10]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[11]  Jörg-Rüdiger Sack,et al.  Determining approximate shortest paths on weighted polyhedral surfaces , 2005, JACM.

[12]  Jörg-Rüdiger Sack,et al.  An Improved Approximation Algorithm for Computing Geometric Shortest Paths , 2003, FCT.

[13]  S. Suri,et al.  Practical methods for approximating shortest paths on a convex polytope in R 3 , 1995, SODA 1995.

[14]  Joseph S. B. Mitchell,et al.  New results on shortest paths in three dimensions , 2004, SCG '04.

[15]  Sandip Das,et al.  A Practical Algorithm for Approximating Shortest Weighted Path between a Pair of Points on Polyhedral Surface , 2004, ICCSA.

[16]  Jörg-Rüdiger Sack,et al.  Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.

[17]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[18]  Joseph S. B. Mitchell,et al.  A new algorithm for computing shortest paths in weighted planar subdivisions (extended abstract) , 1997, SCG '97.

[19]  Subhash Suri,et al.  Practical methods for approximating shortest paths on a convex polytope in R3 , 1995, SODA '95.

[20]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[21]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[22]  Yijie Han,et al.  Shortest paths on a polyhedron , 1996, Int. J. Comput. Geom. Appl..

[23]  Bernard Chazelle,et al.  Triangulating a simple polygon in linear time , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[24]  Pankaj K. Agarwal,et al.  Computing Approximate Shortest Paths on Convex Polytopes , 2001, Algorithmica.

[25]  Mark de Berg,et al.  Trekking in the Alps Without Freezing or Getting Tired , 1993, Algorithmica.

[26]  Pankaj K. Agarwal,et al.  Approximating Shortest Paths on a Nonconvex Polyhedron , 2000, SIAM J. Comput..

[27]  Pankaj K. Agarwal,et al.  Approximating shortest paths on a nonconvex polyhedron , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.