STELLAR POPULATIONS FROM SPECTROSCOPY OF A LARGE SAMPLE OF QUIESCENT GALAXIES AT Z > 1: MEASURING THE CONTRIBUTION OF PROGENITOR BIAS TO EARLY SIZE GROWTH

We analyze the stellar populations of a sample of 62 massive (log M*/M☉ > 10.7) galaxies in the redshift range 1 < z < 1.6, with the main goal of investigating the role of recent quenching in the size growth of quiescent galaxies. We demonstrate that our sample is not biased toward bright, compact, or young galaxies, and thus is representative of the overall quiescent population. Our high signal-to-noise ratio Keck/LRIS spectra probe the rest-frame Balmer break region that contains important absorption line diagnostics of recent star formation activity. We obtain improved measures of the various stellar population parameters, including the star formation timescale τ, age, and dust extinction, by fitting templates jointly to both our spectroscopic and broadband photometric data. We identify which quiescent galaxies were recently quenched and backtrack their individual evolving trajectories on the UVJ color–color plane finding evidence for two distinct quenching routes. By using sizes measured in the previous paper of this series, we confirm that the largest galaxies are indeed among the youngest at a given redshift. This is consistent with some contribution to the apparent growth from recent arrivals, an effect often called progenitor bias. However, we calculate that recently quenched objects can only be responsible for about half the increase in average size of quiescent galaxies over a 1.5 Gyr period, corresponding to the redshift interval 1.25 < z < 2. The remainder of the observed size evolution arises from a genuine growth of long-standing quiescent galaxies.

[1]  J. Trump,et al.  FROM STARBURST TO QUIESCENCE: TESTING ACTIVE GALACTIC NUCLEUS FEEDBACK IN RAPIDLY QUENCHING POST-STARBURST GALAXIES , 2014, 1407.3834.

[2]  H. Rix,et al.  A massive galaxy in its core formation phase three billion years after the Big Bang , 2014, Nature.

[3]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[4]  R. Ellis,et al.  MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH , 2014, 1404.4872.

[5]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[6]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[7]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[8]  J. Dunlop,et al.  THE PROGENITORS OF LOCAL ULTRA-MASSIVE GALAXIES ACROSS COSMIC TIME: FROM DUSTY STAR-BURSTING TO QUIESCENT STELLAR POPULATIONS , 2014, 1402.0003.

[9]  K. Schawinski,et al.  SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1401.1510.

[10]  S. Belli,et al.  VELOCITY DISPERSIONS AND DYNAMICAL MASSES FOR A LARGE SAMPLE OF QUIESCENT GALAXIES AT z > 1: IMPROVED MEASURES OF THE GROWTH IN MASS AND SIZE , 2013, 1311.3317.

[11]  Stefano Andreon,et al.  SPECTROSCOPIC CONFIRMATION OF THE RICH z = 1.80 GALAXY CLUSTER JKCS 041 USING THE WFC3 GRISM: ENVIRONMENTAL TRENDS IN THE AGES AND STRUCTURE OF QUIESCENT GALAXIES , 2013, 1310.6754.

[12]  Stsci,et al.  The imprint of dark matter haloes on the size and velocity dispersion evolution of early-type galaxies , 2013, 1310.2255.

[13]  Christopher E. Moody,et al.  CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.

[14]  A. Renzini,et al.  THE EVOLUTION OF THE NUMBER DENSITY OF COMPACT GALAXIES , 2013, 1309.2427.

[15]  R. Cid Fernandes,et al.  The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes , 2013, Proceedings of the International Astronomical Union.

[16]  H. Rix,et al.  QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z ∼ 2 , 2013, 1305.1943.

[17]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[18]  A. Dressler,et al.  THE IMACS CLUSTER BUILDING SURVEY. II. SPECTRAL EVOLUTION OF GALAXIES IN THE EPOCH OF CLUSTER ASSEMBLY , 2013, 1303.4272.

[19]  O. Ilbert,et al.  NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION , 2013, 1302.5115.

[20]  M. Franx,et al.  HST/WFC3 CONFIRMATION OF THE INSIDE-OUT GROWTH OF MASSIVE GALAXIES AT 0 < z < 2 AND IDENTIFICATION OF THEIR STAR-FORMING PROGENITORS AT z ∼ 3 , 2012, 1208.0341.

[21]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[22]  H. Rix,et al.  STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.

[23]  D. C. Martin,et al.  QUENCHING STAR FORMATION AT INTERMEDIATE REDSHIFTS: DOWNSIZING OF THE MASS FLUX DENSITY IN THE GREEN VALLEY , 2012, Proceedings of the International Astronomical Union.

[24]  Carnegie,et al.  CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z ∼ 2 , 2012, 1206.5000.

[25]  A. Cimatti,et al.  DEEP NEAR-INFRARED SPECTROSCOPY OF PASSIVELY EVOLVING GALAXIES AT z ≳ 1.4 , 2012, 1206.1540.

[26]  S. Toft,et al.  DEEP ABSORPTION LINE STUDIES OF QUIESCENT GALAXIES AT z ∼ 2: THE DYNAMICAL-MASS–SIZE RELATION AND FIRST CONSTRAINTS ON THE FUNDAMENTAL PLANE , 2012, 1204.3099.

[27]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[28]  A. Cimatti,et al.  Fast evolving size of early-type galaxies at z > 2 and the role of dissipationless (dry) merging , 2012, 1202.5403.

[29]  A. Leauthaud,et al.  Size and velocity-dispersion evolution of early-type galaxies in a Λ cold dark matter universe , 2012, 1202.0971.

[30]  J. Trump,et al.  Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria , 2012 .

[31]  J. L. Donley,et al.  IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA , 2012, 1201.3899.

[32]  G. Brammer,et al.  A LARGE POPULATION OF MASSIVE COMPACT POST-STARBURST GALAXIES AT z > 1: IMPLICATIONS FOR THE SIZE EVOLUTION AND QUENCHING MECHANISM OF QUIESCENT GALAXIES , 2011, 1112.0313.

[33]  C. Marmo,et al.  The WIRCam Deep Survey I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields , 2011, 1111.6997.

[34]  R. Ellis,et al.  CAN MINOR MERGING ACCOUNT FOR THE SIZE GROWTH OF QUIESCENT GALAXIES? NEW RESULTS FROM THE CANDELS SURVEY , 2011, 1110.1637.

[35]  Marijn Franx,et al.  SIZES AND SURFACE BRIGHTNESS PROFILES OF QUIESCENT GALAXIES AT z ∼ 2 , 2011, 1111.3361.

[36]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[37]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[38]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS , 2011, 1101.3308.

[39]  Toru Yamada,et al.  MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog , 2010, 1012.2115.

[40]  K. Schawinski,et al.  THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S , 2010, 1008.2974.

[41]  T. Treu,et al.  KECK SPECTROSCOPY OF z>1 FIELD SPHEROIDALS: DYNAMICAL CONSTRAINTS ON THE GROWTH RATE OF RED “NUGGETS” , 2010, 1004.1331.

[42]  D. Kocevski,et al.  THE ORIGIN OF [O ii] IN POST-STARBURST AND RED-SEQUENCE GALAXIES IN HIGH-REDSHIFT CLUSTERS , 2010, 1003.1780.

[43]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[44]  P. Hopkins,et al.  Discriminating Between the Physical Processes that Drive Spheroid Size Evolution , 2009, 0909.2039.

[45]  M. Franx,et al.  HOW MASSIVE ARE MASSIVE COMPACT GALAXIES? , 2009, 0909.5182.

[46]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[47]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[48]  T. Tal,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 12/14/05 THE RELATION BETWEEN COMPACT, QUIESCENT HIGH REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GR , 2022 .

[49]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[50]  P. Hopkins,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. IV. EVOLUTION IN THE SCALING RELATIONS OF SPHEROIDS , 2008, 0807.2868.

[51]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[52]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[53]  G. Illingworth,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DETECTION OF A RED SEQUENCE OF MASSIVE FIELD GALAXIES AT Z ∼ 2.3 AND ITS EVOLUTION TO Z ∼ 0 1 , 2022 .

[54]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[55]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[56]  R. Schiavon,et al.  Ages and Abundances of Red Sequence Galaxies as a Function of LINER Emission-Line Strength , 2007, 0707.1523.

[57]  P. P. van der Werf,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[58]  H. Rix,et al.  Spectroscopic Identification of Massive Galaxies at z ~ 2.3 with Strongly Suppressed Star Formation , 2006, astro-ph/0608446.

[59]  H. Rix,et al.  The Space Density and Colors of Massive Galaxies at 2 < z < 3: The Predominance of Distant Red Galaxies , 2006, astro-ph/0601113.

[60]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[61]  J. Newman,et al.  On the Origin of [O II] Emission in Red-Sequence and Poststarburst Galaxies , 2005, astro-ph/0512446.

[62]  P. P. van der Werf,et al.  IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z > 2 , 2005, astro-ph/0504219.

[63]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[64]  A. Cimatti,et al.  Old galaxies in the young Universe , 2004, Nature.

[65]  L. Kewley,et al.  [O II] as a Star Formation Rate Indicator , 2004, astro-ph/0401172.

[66]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[67]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[68]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[69]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[70]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[71]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[72]  R. Ellis,et al.  Precision photometry of early-type galaxies in the Coma and Virgo clusters: a test of the universality of the colour–magnitude relation – II. Analysis , 1992 .