Scalable energy-efficient magnetoelectric spin–orbit logic

Since the early 1980s, most electronics have relied on the use of complementary metal–oxide–semiconductor (CMOS) transistors. However, the principles of CMOS operation, involving a switchable semiconductor conductance controlled by an insulating gate, have remained largely unchanged, even as transistors are miniaturized to sizes of 10 nanometres. We investigated what dimensionally scalable logic technology beyond CMOS could provide improvements in efficiency and performance for von Neumann architectures and enable growth in emerging computing such as artifical intelligence. Such a computing technology needs to allow progressive miniaturization, reduce switching energy, improve device interconnection and provide a complete logic and memory family. Here we propose a scalable spintronic logic device that operates via spin–orbit transduction (the coupling of an electron’s angular momentum with its linear momentum) combined with magnetoelectric switching. The device uses advanced quantum materials, especially correlated oxides and topological states of matter, for collective switching and detection. We describe progress in magnetoelectric switching and spin–orbit detection of state, and show that in comparison with CMOS technology our device has superior switching energy (by a factor of 10 to 30), lower switching voltage (by a factor of 5) and enhanced logic density (by a factor of 5). In addition, its non-volatility enables ultralow standby power, which is critical to modern computing. The properties of our device indicate that the proposed technology could enable the development of multi-generational computing.A scalable spintronic device operating via spin–orbit transduction and magnetoelectric switching and using advanced quantum materials shows non-volatility and improved performance and energy efficiency compared with CMOS devices.

[1]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[2]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[3]  M. Silberstein,et al.  A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors , 2003, IEEE International Electron Devices Meeting 2003.

[4]  A. Seabaugh,et al.  Tunnel Field-Effect Transistors: State-of-the-Art , 2014, IEEE Journal of the Electron Devices Society.

[5]  Giovanni De Micheli,et al.  Majority Logic Synthesis , 2018, 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[6]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[7]  J. Meindl,et al.  Limits on silicon nanoelectronics for terascale integration. , 2001, Science.

[8]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[9]  Sivaraman Guruswamy,et al.  Large magnetostriction in directionally solidified FeGa and FeGaAl alloys , 2001 .

[10]  Dmitri E. Nikonov,et al.  Material Targets for Scaling All Spin Logic , 2012, ArXiv.

[11]  J.D. Meindl,et al.  Interconnection and electromigration scaling theory , 1987, IEEE Transactions on Electron Devices.

[12]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[13]  A. Fert,et al.  Inverse spin Hall effect in a closed loop circuit , 2014, 1405.2100.

[14]  T. Seidel,et al.  AVD and ALD as Two Complementary Technology Solutions for Next Generation Dielectric and Conductive Thin‐Film Processing , 2006 .

[15]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[16]  Mark Horowitz,et al.  1.1 Computing's energy problem (and what we can do about it) , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[17]  Christopher J. Wilson,et al.  Sub-100 nm2 Cobalt Interconnects , 2018, IEEE Electron Device Letters.

[18]  Supriyo Datta,et al.  All spin logic: Modeling multi-magnet networks interacting via spin currents , 2012 .

[19]  C. Auth,et al.  A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[20]  Dennis M. Newns,et al.  A low-voltage high-speed electronic switch based on piezoelectric transduction , 2012 .

[21]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[22]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[23]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[24]  M. Veit,et al.  Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures , 2018, Nature Communications.

[25]  Lena F. Kourkoutis,et al.  Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic , 2016, Nature.

[26]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[27]  Yoichi Ando,et al.  Spin-electricity conversion induced by spin injection into topological insulators. , 2014, Physical review letters.

[28]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[29]  I. Young,et al.  Beyond CMOS computing with spin and polarization , 2018 .

[30]  Markus Voelter,et al.  State of the Art , 1997, Pediatric Research.

[31]  Shutaro Karube,et al.  Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfaces , 2016, 1601.04292.

[32]  C. Binek,et al.  Robust isothermal electric control of exchange bias at room temperature. , 2010, Nature materials.

[33]  Siddharth Rajan,et al.  A heterojunction modulation-doped Mott transistor , 2011, 1109.5299.

[34]  A. Thean,et al.  Design and benchmarking of hybrid CMOS-Spin Wave Device Circuits compared to 10nm CMOS , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[35]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[36]  Christian Binek,et al.  Increasing the Neel temperature of magnetoelectric chromia for voltage-controlled spintronics , 2014 .

[37]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[38]  W. Rippard,et al.  Switching Distributions for Perpendicular Spin-Torque Devices Within the Macrospin Approximation , 2012, IEEE Transactions on Magnetics.

[39]  A. V. Carazo,et al.  Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites , 2001 .

[40]  Yu Fu,et al.  Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. , 2016, Nature materials.

[41]  Narayanan Vijaykrishnan,et al.  Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications , 2015, IEEE Micro.

[42]  Zhengyang Zhao,et al.  Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films , 2017, Nature Materials.

[43]  Claude E. Shannon,et al.  A Universal Turing Machine with Two Internal States , 1956 .

[44]  Dmitri E. Nikonov,et al.  All Spin Nano-magnetic State Elements , 2012, ArXiv.

[45]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[46]  C. Binek,et al.  Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics , 2010, 1004.3763.

[47]  A. Fert,et al.  Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films. , 2016, Physical review letters.

[48]  Christopher J. Wilson,et al.  Highly Scaled Ruthenium Interconnects , 2017, IEEE Electron Device Letters.

[49]  Dmitri E. Nikonov,et al.  Modeling and Design of Spintronic Integrated Circuits , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[51]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[52]  K. Kern,et al.  Giant spin splitting through surface alloying. , 2007, Physical review letters.

[53]  I. Young,et al.  Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system , 2018, Science Advances.

[54]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[55]  C. Robert,et al.  Spin-orbit engineering in transition metal dichalcogenide alloy monolayers , 2015, Nature Communications.

[56]  G. Vignale,et al.  Microscopic theory of the inverse Edelstein effect. , 2013, Physical review letters.

[57]  P. Kelly,et al.  Non-collinear magnetoelectronics , 2006, cond-mat/0602151.

[58]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[59]  V. Garcia,et al.  Electric-field control of magnetic order above room temperature. , 2014, Nature materials.

[60]  Naresh R. Shanbhag,et al.  Shannon-inspired Statistical Computing to Enable Spintronics , 2017, ArXiv.

[61]  R. Ramesh,et al.  Deterministic switching of ferromagnetism at room temperature using an electric field , 2014, Nature.

[62]  M. Lipson,et al.  Device Scaling Considerations for Nanophotonic CMOS Global Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[63]  Laurent Vila,et al.  A new spin for oxide interfaces , 2018 .

[64]  K. J. Kuhn,et al.  Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.

[65]  P. B. Visscher,et al.  Spin-torque switching: Fokker-Planck rate calculation , 2005 .

[66]  A. Fert,et al.  Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials , 2013, Nature Communications.

[67]  N. Khang,et al.  A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching , 2017, Nature Materials.

[68]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[69]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[70]  M. Shatzkes,et al.  ELECTRICAL RESISTIVITY MODEL FOR POLYCRYSTALLINE FILMS: THE CASE OF SPECULAR REFLECTION AT EXTERNAL SURFACES , 1969 .

[71]  Michel Dyakonov,et al.  Current-induced spin orientation of electrons in semiconductors , 1971 .

[72]  T. Zhao,et al.  Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution , 2008 .

[73]  K. Saraswat,et al.  Comparison of (001), (110) and (111) uniaxial- and biaxial- strained-Ge and strained-Si PMOS DGFETs for all channel orientations: Mobility enhancement, drive current, delay and off-state leakage , 2008, 2008 IEEE International Electron Devices Meeting.