Origin and tectonic setting of Pingqiao fluorite-lithium deposit in the Guizhou, southwest Yangtze Block, China

[1]  F. Corfu,et al.  Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran , 2021 .

[2]  Rongqing Zhang,et al.  Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes , 2021 .

[3]  Shou‐ting Zhang,et al.  Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China , 2021, Journal of Earth Science.

[4]  Chong-guang Luo,et al.  Super-enrichment of lithium and niobium in the upper Permian Heshan Formation in Pingguo, Guangxi, China , 2021, Science China Earth Sciences.

[5]  L. Yang,et al.  Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: A holistic perspective from the Youjiang Basin , 2020 .

[6]  D. Harlov,et al.  Three late-Mesozoic fluorite deposit belts in southeast China and links to subduction of the (paleo-) Pacific plate , 2020 .

[7]  Zhilong Huang,et al.  Multistage fluid sources and evolution of Qinglong Sb-(Au) deposit in northern margin of Youjiang basin, SW China: REE geochemistry and Sr-H-O isotopes of ore-related jasperoid, quartz and fluorite , 2020 .

[8]  L. Bagas,et al.  Fluid composition and evolution of the Langxi Ba-F deposit, Yangtze Block, China: New insight from LA-ICP-MS study of individual fluid inclusion , 2020, Ore Geology Reviews.

[9]  J. Magnan,et al.  From Mine to Mind and Mobiles: Society’s Increasing Dependence on Lithium , 2020 .

[10]  L. Lagos,et al.  Classification and Characteristics of Natural Lithium Resources , 2020 .

[11]  L. Yang,et al.  Recognition of two contrasting structural- and mineralogical-gold mineral systems in the Youjiang basin, China-Vietnam: Orogenic gold in the south and Carlin-type in the north , 2020 .

[12]  Shou‐ting Zhang,et al.  Genesis of the Yujiadian F-Pb-Zn-Ag deposit, Inner Mongolia, NE China: Constraints from geochemistry, fluid inclusion, zircon geochronology and stable isotopes , 2020 .

[13]  Shou‐ting Zhang,et al.  Formation timing and genesis of Madiu fluorite deposit in East Qinling, China: Constraints from fluid inclusion, geochemistry, and H–O–Sr–Nd isotopes , 2020, Geological Journal.

[14]  L. Bagas,et al.  Fluorite deposits in the Zhejiang Province, southeast China: The possible role of extension during the late stages in the subduction of the Paleo-Pacific oceanic plate, as indicated by the Gudongkeng fluorite deposit , 2020 .

[15]  Hao Zou,et al.  The Laqiong Sb-Au deposit: Implications for polymetallic mineral systems in the Tethys-Himalayan zone of southern Tibet, China , 2019, Gondwana Research.

[16]  Jianzhong Li,et al.  Geochemical characteristics of natural gases related to Late Paleozoic coal measures in China , 2018, Marine and Petroleum Geology.

[17]  John F. Casey,et al.  Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary , 2018, Proceedings of the National Academy of Sciences.

[18]  Lei Yang,et al.  Crystal fractionation of granitic magma during its non-transport processes: A physics-based perspective , 2018, Science China Earth Sciences.

[19]  Qingfei Wang,et al.  Tectonic evolution, superimposed orogeny, and composite metallogenic system in China , 2017 .

[20]  Zhang Yanhua,et al.  Yanshanian (Late Mesozoic) ore deposits in China – An introduction to the Special Issue , 2017 .

[21]  Shou‐ting Zhang,et al.  The source of Fengjia and Langxi barite–fluorite deposits in southeastern Sichuan, China: evidence from rare earth elements and S, Sr, and Sm–Nd isotopic data , 2017 .

[22]  Junbo Gao,et al.  Multiple proxies indicating methane seepage as the origin of Devonian large barite deposit in Zhenning-Ziyun, Guizhou, SW China , 2017 .

[23]  G. Delpech,et al.  Genetic constraints on world-class carbonate- and siliciclastic-hosted stratabound fluorite deposits in Burgundy (France) inferred from mineral paragenetic sequence and fluid inclusion studies , 2016 .

[24]  P. Tomascak,et al.  Advances in Lithium Isotope Geochemistry , 2015 .

[25]  R. H. Sawkar,et al.  Isotope (C and O) composition of auriferous quartz carbonate veins, central lode system, Gadag Gold Field, Dharwar Craton, India: Implications to source of ore fluids , 2015 .

[26]  T. Sun,et al.  Multiple Mesozoic magma processes formed the 240–185 Ma composite Weishan pluton, South China: evidence from geochronology, geochemistry, and Sr-Nd isotopes , 2015 .

[27]  Jinxiang Wang,et al.  Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea: Impact of changing archaeal community composition , 2015 .

[28]  S. Johnston,et al.  Cretaceous tectonic evolution of South China: A preliminary synthesis , 2014 .

[29]  J. Farquhar,et al.  Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: A review , 2014 .

[30]  Cao Hua-we REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications,Inner Mongolia Autonomous Region , 2014 .

[31]  Guowei Zhang,et al.  Phanerozoic tectonics of the South China Block: Key observations and controversies , 2013 .

[32]  Mao Jingwen,et al.  Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings , 2013, Mineralium Deposita.

[33]  Gregory A. Keoleian,et al.  Global lithium resources: Relative importance of pegmatite, brine and other deposits , 2012 .

[34]  Jun Chen,et al.  Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China , 2012 .

[35]  M. Cho,et al.  Two‐phase contractional deformation of the Jurassic Daebo Orogeny, Chungnam Basin, Korea, and its correlation with the early Yanshanian movement of China , 2012 .

[36]  C. Key,et al.  C,O Isotope and REE Geochemistry of the Hydrothermal Calcites from the Tianqiao Pb-Zn Ore Deposit in NW Guizhou Province,China , 2012 .

[37]  G. Keoleian,et al.  Global Lithium Availability , 2011 .

[38]  G. Henderson,et al.  Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems , 2010 .

[39]  H. Dill The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium , 2010 .

[40]  Weidong Sun,et al.  The golden transformation of the Cretaceous plate subduction in the West Pacific , 2007 .

[41]  Xian‐Hua Li,et al.  Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model , 2007 .

[42]  Zhao Zhiqi,et al.  NEW PROGRESS IN LITHIUM ISOTOPE ENVIRONMENTAL GEOCHEMISTRY , 2006 .

[43]  A. Fallick,et al.  Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle , 2005 .

[44]  G. Markl,et al.  REE systematics in hydrothermal fluorite , 2005 .

[45]  P. Jian Samarium-Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province: Constraints on the mineralizing age and ore-forming materials' sources. , 2003 .

[46]  P. Jian Strontium Isotope Geochemistry of Fluorites from Qinglong Antimony Deposit in Guizhou Province , 2003 .

[47]  W. Guo-zhi REE GEOCHEMICAL CHARACTERISTIC FROM FLUORITE IN QINGLONG ANTIMONY DEPOSIT,SOUTH-WESTERN GUIZHOU , 2003 .

[48]  M. Boni,et al.  Carbonate-Hosted Zinc-Lead Deposits in the Lower Cambrian of Hunan, South China: A Radiogenic (Pb, Sr) Isotope Study , 2002 .

[49]  A. Eisenhauer,et al.  Glacial–interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet , 2002 .

[50]  J. Wilkinson Fluid inclusions in hydrothermal ore deposits , 2001 .

[51]  J. Boulègue,et al.  Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa , 2000 .

[52]  H. Gilg,et al.  RARE EARTH ELEMENT AND ISOTOPE (C, O, SR) CHARACTERISTICS OF HYDROTHERMAL CARBONATES : GENETIC IMPLICATIONS FOR DOLOMITE-HOSTED TALC MINERALIZATION AT GOPFERSGRUN (FICHTELGEBIRGE, GERMANY) , 1999 .

[53]  C. You,et al.  Precise determination of lithium isotopic composition in low concentration natural samples , 1996 .

[54]  W. McDonough,et al.  The composition of the Earth , 1995 .

[55]  J. Webster,et al.  Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas , 1994 .

[56]  K. Jarvis,et al.  REE composition of an aqueous magmatic fluid: A fluid inclusion study from the Capitan Pluton, New Mexico, U.S.A. , 1994 .

[57]  R. Bodnar Revised equation and table for determining the freezing point depression of H2O-Nacl solutions , 1993 .

[58]  M. Korsch,et al.  Strontium isotope studies of barites; implications for the origin of base metal mineralization in Tasmania , 1992 .

[59]  E. Rowan,et al.  Strontium isotopic constraints on the origin of ore-forming fluids of the Viburnum Trend, southeast Missouri , 1991 .

[60]  D. Dahl,et al.  Construction of the Triassic and Jurassic portion of the Phanerozoic curve of seawater 87Sr/86Sr , 1990 .

[61]  R. Upstill‐Goddard,et al.  The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters , 1990 .

[62]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[63]  James Constantopoulos Fluid inclusions and rare earth element geochemistry of fluorite from south-central Idaho , 1988 .

[64]  T. Nakano,et al.  Carbon and oxygen isotopes of calcites from Japanese skarn deposits , 1986 .

[65]  H. Ohmoto Stable isotope geochemistry of ore deposits , 1986 .

[66]  W. Kelly,et al.  Rubidium-strontium dating of ore deposits hosted by Rb-rich rocks, using calcite and other common Sr-bearing minerals , 1984 .

[67]  R. E. Denison,et al.  Variation of seawater 87Sr/86Sr throughout Phanerozoic time , 1982 .

[68]  S. Kesler,et al.  Sulfur- and strontium-isotopic geochemistry of celestite, barite and gypsum from the Mesozoic basins of northeastern Mexico , 1980 .

[69]  R. Hodder,et al.  Distribution and genesis of fluorite deposits in the Western United States and their significance to metallogeny , 1978 .

[70]  A. Masuda,et al.  Cerium in chert as an indication of marine environment of its formation , 1977, Nature.

[71]  J. Bailey Fluorine in granitic rocks and melts: A review☆ , 1977 .

[72]  J. R. O'neil,et al.  Compilation of stable isotope fractionation factors of geochemical interest , 1977 .

[73]  P. Parekh,et al.  The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis , 1976 .

[74]  H. Taylor The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition , 1974 .

[75]  J. Veizer,et al.  87Sr/86Sr composition of seawater during the Phanerozoic , 1974 .

[76]  R. Clayton,et al.  Oxygen isotope exchange between quartz and water , 1972 .

[77]  H. Taylor,et al.  Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden. , 1967 .

[78]  R. Clayton,et al.  The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis , 1963 .

[79]  M. Santosh,et al.  Fault-controlled carbonate-hosted barite-fluorite mineral systems: The Shuanghe deposit, Yangtze Block, South China , 2022 .