Generic Quantum Markov Semigroups: the Gaussian Gauge Invariant Case
暂无分享,去创建一个
[1] Igor Volovich,et al. Quantum Theory and Its Stochastic Limit , 2002 .
[2] Franco Fagnola,et al. TWO-PHOTON ABSORPTION AND EMISSION PROCESS , 2005 .
[3] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[4] ON THE IDENTIFICATION OF CONTINUOUS-TIME MARKOV CHAINS WITH A GIVEN INVARIANT MEASURE , 1994 .
[5] R. Carbone,et al. ExponentialL2-convergence of quantum Markov semigroups on $$\mathcal{B}(h)$$ , 2000 .
[6] Lectures on the Qualitative Analysis of Quantum Markov Semigroups , 2002 .
[7] Thomas M. Liggett,et al. Exponential $L_2$ Convergence of Attractive Reversible Nearest Particle Systems , 1989 .
[8] F. Fagnola. Algebraic probability spaces , 1999 .
[9] REMARKS ON SUFFICIENT CONDITIONS FOR CONSERVATIVITY OF MINIMAL QUANTUM DYNAMICAL SEMIGROUPS , 2005, math-ph/0503047.
[10] Luigi Accardi,et al. Generic Quantum Markov Semigroups: the Fock Case , 2005, Open Syst. Inf. Dyn..
[11] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[12] Mu-Fa Chen,et al. From Markov Chains to Non-Equilibrium Particle Systems , 1992 .
[13] V. Gorini,et al. Quantum detailed balance and KMS condition , 1978 .
[14] Lectures on Quantum Interacting Particle Systems , 2002 .
[15] R. F. Streater,et al. Detailed balance and quantum dynamical maps , 1998 .
[16] F. Fagnola. Quantum Markov Semigroups and Quantum Markov Flows , 1999 .
[17] F. Fagnola,et al. THE APPROACH TO EQUILIBRIUM OF A CLASS OF QUANTUM DYNAMICAL SEMIGROUPS , 1998 .
[18] Sufficient Conditions for Conservativity of Minimal Quantum Dynamical Semigroups , 1997, funct-an/9711006.
[19] Invariant measures for Q-processes when Q is not regular , 1991, Advances in Applied Probability.
[20] L. Miclo. Relations entre isopérimétrie et trou spectral pour les chaînes de Markov finies , 1999 .
[21] A. Frigerio,et al. Stationary states of quantum dynamical semigroups , 1978 .