Deterministic Abelian Sandpile Models and Patterns
暂无分享,去创建一个
[1] G. Pólya,et al. XII. Über die Analogie der Kristallsymmetrie in der Ebene , 1924 .
[2] H. Coxeter,et al. Generators and relations for discrete groups , 1957 .
[3] D. Schattschneider. The Plane Symmetry Groups: Their Recognition and Notation , 1978 .
[4] G. E. Martin. Transformation Geometry: An Introduction to Symmetry , 1982 .
[5] Paul Coddington,et al. Percolation, quantum tunnelling and the integer Hall effect , 1988 .
[6] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[7] J. H. Conway,et al. Groups, Combinatorics & Geometry: The orbifold notation for surface groups , 1992 .
[8] M. Emmer. Visions of Symmetry: Notebooks, Periodic Drawings and Related Work of M. C. Escher by Doris Schattschneider (review) , 2017 .
[9] Widom. Bethe ansatz solution of the square-triangle random tiling model. , 1993, Physical review letters.
[10] Pavel Kalugin. The Square-Triangle Random-Tiling Model in the Thermodynamic Limit - J. Phys. A27, 3599 (1994) , 1994 .
[11] Determination of the exponent for SAWs on the two-dimensional Manhattan lattice , 1998, cond-mat/9812267.
[12] A. Verberkmoes,et al. UvA-DARE ( Digital Academic Repository ) Triangular Timers on a Triangular Lattice : An Exact Solution , 1999 .
[13] G. Duclos. New York 1987 , 2000 .
[14] Lionel Levine. Limit theorems for internal aggregation models , 2007, 0712.4358.