The infant gut resistome is associated with E. coli and early-life exposures

[1]  Timothy L. Tickle,et al.  Multivariable association discovery in population-scale meta-omics studies , 2021, bioRxiv.

[2]  N. Paneth,et al.  Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants , 2020, PloS one.

[3]  B. Seipolt,et al.  Neonatal and young infant sepsis by Group B Streptococci and Escherichia coli: a single-center retrospective analysis in Germany—GBS screening implementation gaps and reduction in antibiotic resistance , 2020, European Journal of Pediatrics.

[4]  G. Gao,et al.  Metagenomic analysis reveals the microbiome and resistome in migratory birds , 2020, Microbiome.

[5]  K. Korpela,et al.  Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort , 2020, Pediatric Research.

[6]  Erica M. Hartmann,et al.  Mobilizable antibiotic resistance genes are present in dust microbial communities , 2020, PLoS pathogens.

[7]  Modupe O. Coker,et al.  Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study , 2020, BJOG : an international journal of obstetrics and gynaecology.

[8]  Geoffrey L. Winsor,et al.  CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database , 2019, Nucleic Acids Res..

[9]  E. Sanders,et al.  Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life , 2019, Nature Communications.

[10]  F. Baquero,et al.  Defining and combating antibiotic resistance from One Health and Global Health perspectives , 2019, Nature Microbiology.

[11]  Kevin Vervier,et al.  Stunted microbiota and opportunistic pathogen colonisation in caesarean section birth , 2019, Nature.

[12]  J. Smilowitz,et al.  Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria , 2019, Antimicrobial Resistance & Infection Control.

[13]  G. Dantas,et al.  Metagenomic signatures of early life hospitalization and antibiotic treatment in the infant gut microbiota and resistome persist long after discharge , 2019, Nature Microbiology.

[14]  Colin J. Brislawn,et al.  Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases , 2019, Nature.

[15]  Philipp C. Münch,et al.  Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life , 2018, Nature Microbiology.

[16]  R. Støen,et al.  Effects of Probiotic Supplementation on the Gut Microbiota and Antibiotic Resistome Development in Preterm Infants , 2018, Front. Pediatr..

[17]  M. Bonder,et al.  Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles , 2018, Gut microbes.

[18]  R. Gibbs,et al.  Temporal development of the gut microbiome in early childhood from the TEDDY study , 2018, Nature.

[19]  C. Huttenhower,et al.  The human gut microbiome in early-onset type 1 diabetes from the TEDDY study , 2018, Nature.

[20]  J. Bengtsson-Palme,et al.  Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements , 2018, Nature Communications.

[21]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[22]  M. Yassour,et al.  Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. , 2018, Cell host & microbe.

[23]  Andrew W. Brooks,et al.  Gut microbiota diversity across ethnicities in the United States , 2018, bioRxiv.

[24]  T. Smieszek,et al.  Understanding the gender gap in antibiotic prescribing: a cross-sectional analysis of English primary care , 2018, BMJ Open.

[25]  Curtis Huttenhower,et al.  bioBakery: a meta’omic analysis environment , 2017, Bioinform..

[26]  Jean M. Macklaim,et al.  Microbiome Datasets Are Compositional: And This Is Not Optional , 2017, Front. Microbiol..

[27]  Y. Fong,et al.  chngpt: threshold regression model estimation and inference , 2017, BMC Bioinformatics.

[28]  J. Banfield,et al.  Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome , 2017, mSystems.

[29]  M. Ventura,et al.  Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates , 2017, Microbiome.

[30]  S. Schrag,et al.  Epidemiology of Invasive Early-Onset Neonatal Sepsis, 2005 to 2014 , 2016, Pediatrics.

[31]  E. Kristiansson,et al.  The structure and diversity of human, animal and environmental resistomes , 2016, Microbiome.

[32]  B. Evengård,et al.  Gender differences in antibiotic prescribing in the community: a systematic review and meta-analysis. , 2016, The Journal of antimicrobial chemotherapy.

[33]  C. Stanton,et al.  Early Gut Microbiota Perturbations Following Intrapartum Antibiotic Prophylaxis to Prevent Group B Streptococcal Disease , 2016, PloS one.

[34]  D. Guttman,et al.  Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study , 2016, BJOG : an international journal of obstetrics and gynaecology.

[35]  Sanket Patel,et al.  Interconnected microbiomes and resistomes in low-income human habitats , 2016, Nature.

[36]  Duy Tin Truong,et al.  Strain-level microbial epidemiology and population genomics from shotgun metagenomics , 2016, Nature Methods.

[37]  Molly K. Gibson,et al.  Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome , 2016, Nature Microbiology.

[38]  Hongzhe Li,et al.  Association of Cesarean Delivery and Formula Supplementation With the Intestinal Microbiome of 6-Week-Old Infants. , 2016, JAMA pediatrics.

[39]  Curtis Huttenhower,et al.  High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED , 2015, PLoS Comput. Biol..

[40]  S. Sørensen,et al.  High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples , 2015, Journal of Developmental Origins of Health and Disease.

[41]  Na-Ri Shin,et al.  Proteobacteria: microbial signature of dysbiosis in gut microbiota. , 2015, Trends in biotechnology.

[42]  Molly K. Gibson,et al.  Gut resistome development in healthy twin pairs in the first year of life , 2015, Microbiome.

[43]  Eric S. Lander,et al.  Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability , 2015, Science Translational Medicine.

[44]  V. Tremaroli,et al.  Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. , 2015, Cell host & microbe.

[45]  S. Schrag,et al.  US outpatient antibiotic prescribing variation according to geography, patient population, and provider specialty in 2011. , 2015, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  Teresa M. Coque,et al.  What is a resistance gene? Ranking risk in resistomes , 2014, Nature Reviews Microbiology.

[47]  Gerard D. Wright,et al.  The antibiotic resistome: what's new? , 2014, Current opinion in microbiology.

[48]  Grace C. Lee,et al.  Outpatient antibiotic prescribing in the United States: 2000 to 2010 , 2014, BMC Medicine.

[49]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[50]  Sanket Patel,et al.  Pediatric Fecal Microbiota Harbor Diverse and Novel Antibiotic Resistance Genes , 2013, PloS one.

[51]  Jian Wang,et al.  Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota , 2013, Nature Communications.

[52]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[53]  B. Stecher,et al.  'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution , 2013, Nature Reviews Microbiology.

[54]  R. Knight,et al.  Diversity, stability and resilience of the human gut microbiota , 2012, Nature.

[55]  C. Huttenhower,et al.  Metagenomic microbial community profiling using unique clade-specific marker genes , 2012, Nature Methods.

[56]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[57]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[58]  Margaret R Karagas,et al.  Rice consumption contributes to arsenic exposure in US women , 2011, Proceedings of the National Academy of Sciences.

[59]  Gerard D. Wright The antibiotic resistome: the nexus of chemical and genetic diversity , 2007, Nature Reviews Microbiology.

[60]  Yanping Wang,et al.  Human intestinal bacteria as reservoirs for antibiotic resistance genes. , 2004, Trends in microbiology.

[61]  H. Vlamakis,et al.  Evidence for Extensive Resistance Gene Transfer amongBacteroides spp. and among Bacteroides and Other Genera in the Human Colon , 2001, Applied and Environmental Microbiology.

[62]  J. Krieger,et al.  Distribution and mobility of the tetracycline resistance determinant tetQ. , 1997, The Journal of antimicrobial chemotherapy.

[63]  M. Yassour,et al.  Natural history of the infant gut microbiome and impact of antibiotic treatments on strain-level diversity and stability , 2016 .

[64]  V. Tremaroli,et al.  Resource Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life Graphical Abstract Highlights , 2022 .

[65]  Tong Zhang,et al.  Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. , 2013, Water Research.

[66]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[67]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..