THE GELFAND SPECTRUM OF A NONCOMMUTATIVE C*-ALGEBRA: A TOPOS-THEORETIC APPROACH

Abstract We compare two influential ways of defining a generalized notion of space. The first, inspired by Gelfand duality, states that the category of ‘noncommutative spaces’ is the opposite of the category of C*-algebras. The second, loosely generalizing Stone duality, maintains that the category of ‘point-free spaces’ is the opposite of the category of frames (that is, complete lattices in which the meet distributes over arbitrary joins). Earlier work by the first three authors shows how a noncommutative C*-algebra gives rise to a commutative one internal to a certain sheaf topos. The latter, then, has a constructive Gelfand spectrum, also internal to the topos in question. After a brief review of this work, we compute the so-called external description of this internal spectrum, which in principle is a fibred point-free space in the familiar topos of sets and functions. However, we obtain the external spectrum as a fibred topological space in the usual sense. This leads to an explicit Gelfand transform, as well as to a topological reinterpretation of the Kochen–Specker theorem of quantum mechanics.

[1]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[2]  C. J. Isham,et al.  A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .

[3]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .

[4]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[5]  Chris Heunen,et al.  Noncommutativity as a Colimit , 2010, Appl. Categorical Struct..

[6]  D. Scott,et al.  Sheaves and logic , 1979 .

[7]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[8]  Allen Stairs,et al.  Incompleteness, Nonlocality and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics. , 1990 .

[9]  Dana P. Williams Book Review: Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles , 1989 .

[10]  Janusz Migda,et al.  Non-commutative Gelfand-Naimark theorem , 1993 .

[11]  C. Freund Incompleteness , 1888, The Hospital.

[12]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[13]  John Dauns,et al.  Representation of rings by sections , 1968 .

[14]  A. Connes,et al.  Noncommutative Geometry, Quantum Fields and Motives , 2007 .

[15]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[16]  Bas Spitters,et al.  The space of measurement outcomes as a spectrum for non-commutative algebras , 2010, DCM.

[17]  Niels Bohr,et al.  Discussion with Einstein on Epistemological Problems in Atomic Physics , 1996 .

[18]  H. Jehle,et al.  Albert Einstein: Philosopher-Scientist. , 1951 .

[19]  F. Shultz,et al.  Pure states as a dual object forC*-algebras , 1982 .

[20]  M. Rieffel,et al.  Representations of ∗ -Algebras, Locally Compact Groups, and Banach ∗ -Algebraic Bundles, I, II. , 1990 .

[21]  T. Coquand About Stone's notion of spectrum , 2005 .

[22]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[23]  Quantum fields and motives , 2005, hep-th/0504085.

[24]  Steven J. Vickers Locales and Toposes as Spaces , 2007, Handbook of Spatial Logics.

[25]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[26]  John Earman,et al.  Handbook of philosophy of science , 2007 .

[27]  M. Redhead,et al.  Incompleteness, Nonlocality, and Realism: A Prolegomenon to thePhilosophy of Quantum Mechanics , 1989 .

[28]  Bas Spitters,et al.  Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.

[29]  Bernhard Banaschewski,et al.  A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..

[30]  河東 泰之,et al.  A.Connes:Noncommutative Geometry , 1997 .

[31]  Sander Wolters,et al.  A Comparison of Two Topos-Theoretic Approaches to Quantum Theory , 2010, 1010.2031.

[32]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .

[33]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[34]  Nicolaas P. Landsman,et al.  Mathematical Topics Between Classical and Quantum Mechanics , 1998 .

[35]  Philip J. Scott,et al.  Review: Robert Goldblatt, Topoi. The Categorical Analysis of Logic , 1982 .

[36]  T. Coquand,et al.  Constructive Gelfand duality for C*-algebras , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Francis Borceux,et al.  A Handbook of Categorical Algebra 3: Categories of sheaves , 1994 .

[38]  N. P. Landsman Poisson spaces with a transition probability , 1996, quant-ph/9603005.

[39]  P. Gabriel,et al.  Representations of Algebras , 2018, A Tour of Representation Theory.

[40]  Bas Spitters,et al.  A Topos for Algebraic Quantum Theory , 2007, 0709.4364.

[41]  T. Coquand,et al.  Constructive Gelfand duality for C*-algebras , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  Christopher J. Mulvey,et al.  A non-commutative Gel'fand-Naimark theorem , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[43]  N. P. Landsman Between classical and quantum , 2005 .