Bifurcations and Chaos in fractional-Order Simplified Lorenz System

The dynamics of fractional-order systems have attracted increasing attention in recent years. In this paper, we numerically study the bifurcations and chaotic behaviors in the fractional-order simplified Lorenz system using the time-domain scheme. Chaos does exist in this system for a wide range of fractional orders, both less than and greater than three. Complex dynamics with interesting characteristics are presented by means of phase portraits, bifurcation diagrams and the largest Lyapunov exponent. Both the system parameter and the fractional order can be taken as bifurcation parameters, and the range of existing chaos is different for different parameters. The lowest order we found for this system to yield chaos is 2.62.

[1]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[2]  J. Sprott Chaos and time-series analysis , 2001 .

[3]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[4]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[5]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[6]  Min Shi,et al.  An effective analytical criterion for stability testing of fractional-delay systems , 2011, Autom..

[7]  Yufeng Xu,et al.  Numerical Solutions of a Variable-Order Fractional Financial System , 2012, J. Appl. Math..

[8]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[9]  I. Podlubny Fractional differential equations , 1998 .

[10]  Kehui Sun,et al.  Dynamics of a Simplified Lorenz System , 2009, Int. J. Bifurc. Chaos.

[11]  Ali Reza Sahab,et al.  A novel fractional-order hyperchaotic system with a quadratic exponential nonlinear term and its synchronization , 2012, Advances in Difference Equations.

[12]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[13]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[14]  Lap Mou Tam,et al.  Parametric study of the fractional-order Chen–Lee system , 2008 .

[15]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[16]  Mohammad Saleh Tavazoei,et al.  Chaotic attractors in incommensurate fractional order systems , 2008 .

[17]  M. Haeri,et al.  Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems , 2007 .

[18]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[19]  Zhang Ruo-Xun,et al.  Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation , 2009 .

[20]  Yuan Kang,et al.  Chaos in the Newton–Leipnik system with fractional order , 2008 .

[21]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[22]  Paul Woafo,et al.  Dynamics and synchronization analysis of coupled fractional-order nonlinear electromechanical systems , 2012 .

[23]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[24]  Junzhi Yu,et al.  Dynamic analysis of a fractional-order Lorenz chaotic system , 2009 .

[25]  Weihua Deng,et al.  Short memory principle and a predictor-corrector approach for fractional differential equations , 2007 .

[26]  刘璇,et al.  The 0-1 test algorithm for chaos and its applications , 2010 .

[27]  Mohammad Saleh Tavazoei,et al.  Limitations of frequency domain approximation for detecting chaos in fractional order systems , 2008 .

[28]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[29]  Yong Xu,et al.  Chaos in diffusionless Lorenz System with a fractional Order and its Control , 2012, Int. J. Bifurc. Chaos.

[30]  Jie Li,et al.  Chaos in the fractional order unified system and its synchronization , 2008, J. Frankl. Inst..

[31]  Liu Chong-Xin,et al.  Circuit realization of the fractional-order unified chaotic system , 2008 .

[32]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .