Isotonic Regression under Lipschitz Constraint

The pool adjacent violators (PAV) algorithm is an efficient technique for the class of isotonic regression problems with complete ordering. The algorithm yields a stepwise isotonic estimate which approximates the function and assigns maximum likelihood to the data. However, if one has reasons to believe that the data were generated by a continuous function, a smoother estimate may provide a better approximation to that function.In this paper, we consider the formulation which assumes that the data were generated by a continuous monotonic function obeying the Lipschitz condition. We propose a new algorithm, the Lipschitz pool adjacent violators (LPAV) algorithm, which approximates that function; we prove the convergence of the algorithm and examine its complexity.