Formal matched asymptotics for degenerate Ricci flow neckpinches

Gu and Zhu (2008 Commun. Anal. Geom. 16 467–94) have shown that type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on . In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit.

[1]  H. Cao,et al.  On locally conformally flat gradient steady Ricci solitons , 2009, 0909.2833.

[2]  P. Topping,et al.  On type-I singularities in Ricci flow , 2010, 1005.1624.

[3]  Precise asymptotics of the Ricci flow neckpinch , 2005, math/0511247.

[4]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[5]  David Garfinkle,et al.  The Modelling of Degenerate Neck Pinch Singularities in Ricci Flow by Bryant Solitons , 2007, 0709.0514.

[6]  Bruce Kleiner,et al.  Notes on Perelman's papers , 2006 .

[7]  Critical behavior in Ricci flow , 2003, math/0306129.

[8]  P. Baird The Ricci flow: techniques and applications -Part I: Geometric aspects (Mathematical Surveys and Monographs 135) , 2008 .

[9]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[10]  S. Angenent,et al.  Degenerate neckpinches in mean curvature flow. , 1997 .

[11]  Huiling Gu,et al.  The Existence of Type II Singularities for the Ricci Flow on $S^{n+1}$ , 2007, 0707.0033.

[12]  A class of Riemannian manifolds that pinch when evolved by Ricci flow , 2000 .

[13]  Dan Knopf,et al.  An example of neckpinching for Ricci flow on $S^{n+1}$ , 2004 .

[14]  Minimally invasive surgery for Ricci flow singularities , 2009, 0907.0232.

[15]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[16]  J. King,et al.  Self-similar behaviour for the equation of fast nonlinear diffusion , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[17]  R. Hamilton,et al.  Geometric estimates for the Logarithmic fast diffusion equation , 2004 .

[18]  M. Feldman,et al.  Rotationally symmetric shrinking and ex - panding gradient Kahler - Ricci solitons , 2003 .

[19]  S. Brendle Uniqueness of gradient Ricci solitons , 2010, 1010.3684.

[20]  C. Mantegazza,et al.  Evolution of the Weyl Tensor under the Ricci Flow , 2009, 0910.4761.

[21]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.