Optimal generation of Fock states in a weakly nonlinear oscillator

We apply optimal control theory to determine the shortest time in which an energy eigenstate of a weakly anharmonic oscillator can be created under the practical constraint of linear driving. We show that the optimal pulses are beatings of mostly the transition frequencies for the transitions up to the desired state and the next leakage level. The time of the shortest possible pulse for a given nonlinearity scales with the nonlinearity parameter ? as a power law ??? with ?0.73?0.029. This is a qualitative improvement relative to the value ?=1 suggested by a simple Landau?Zener argument.

[1]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[2]  Anthony J Leggett,et al.  Testing the limits of quantum mechanics: motivation, state of play, prospects , 2002 .

[3]  Bernard Yurke,et al.  Squeezed-state generation using a Josephson parametric amplifier , 1987 .

[4]  P. Bertet,et al.  Direct measurement of the Wigner function of a one-photon Fock state in a cavity. , 2002, Physical review letters.

[5]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[6]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[7]  Lowell S. Brown,et al.  Geonium theory: Physics of a single electron or ion in a Penning trap , 1986 .

[8]  J. E. Mooij,et al.  Quantum non-demolition measurement of a superconducting two-level system , 2007 .

[9]  Quantum Measurements with Dynamically Bistable System , 2008, 0810.5016.

[10]  Gerard J. Milburn,et al.  Quantum electromechanical systems , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[11]  M. Dykman Quantum Measurements with Dynamically Bistable Systems , 2009 .

[12]  Visarath In,et al.  Applications of Nonlinear Dynamics , 2009 .

[13]  R. Blümel,et al.  NONLINEAR COLLECTIVE OSCILLATIONS OF AN ION CLOUD IN A PAUL TRAP , 1997 .

[14]  P. Rebentrost,et al.  Optimal control of a leaking qubit , 2008, 0808.2680.

[15]  Cooper-Pair Molasses: Cooling a nanomechanical resonator with quantum backaction , 2006 .

[16]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[17]  A. Cleland Foundations of nanomechanics , 2002 .

[18]  O. Buisson,et al.  Optimal control of superconducting N-level quantum systems , 2009, 0903.4028.

[19]  Collett,et al.  Squeezing spectra for nonlinear optical systems. , 1985, Physical review. A, General physics.

[20]  C. cohen-tannoudji,et al.  Quantum mechanics volume II / Claude Cohen-Tannoudji, Berbard Diu, Franck Laloe , 1977 .

[21]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[22]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[23]  F. Wilhelm,et al.  Dynamical tunneling in macroscopic systems. , 2007, Physical review letters.

[24]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[25]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[26]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[27]  L Frunzio,et al.  An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements , 2003, cond-mat/0312623.

[28]  R. Fazio,et al.  Optimized single-qubit gates for Josephson phase qubits , 2008, 0811.2174.

[29]  D. Haar A Theory of Energy Transfer in Collisions , 1969 .

[30]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[31]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[32]  M. Roukes,et al.  Basins of attraction of a nonlinear nanomechanical resonator. , 2007, Physical review letters.