A NEW PARAMETER ESTIMATION METHOD FOR GTD MODEL BASED ON MODIFIED COMPRESSED SENSING

The electromagnetic scattering mechanism of radar targets in the high-frequency domain can be characterized exactly by geometrical theory of difiraction (GTD) model. In this paper, we propose a novel parameter estimation method for GTD model based on compressed sensing. The sparse characteristic of radar echoes is analyzed, and the parameter estimation problem is converted to one of sparse signal reconstruction. Furthermore, clustering and linear least-minimum-squares algorithms are utilized to improve the accuracy of the result. Compared with several modern spectral estimation techniques, the proposed method gives a more precise estimation of the GTD model parameters, especially the scattering centers. Simulations with synthetic and measured data in an anechoic chamber conflrm the efiectiveness of the method.

[1]  Randolph L. Moses,et al.  High resolution exponential modeling of fully polarized radar returns , 1991 .

[2]  Ali Cafer Gürbüz,et al.  A Compressive Sensing Data Acquisition and Imaging Method for Stepped Frequency GPRs , 2009, IEEE Transactions on Signal Processing.

[3]  Jing Li,et al.  Applications of Compressed Sensing for Multiple Transmitters Multiple Azimuth Beams SAR Imaging , 2012 .

[4]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[5]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[6]  C. J. Reddy,et al.  Sparse basis expansions for compressive sensing of electromagnetic scattering patterns computed using iterative physical optics , 2012, 2012 International Conference on Electromagnetics in Advanced Applications.

[7]  Xinzheng Zhang,et al.  SAR TARGET CLASSIFICATION USING BAYESIAN COMPRESSIVE SENSING WITH SCATTERING CENTERS FEATURES , 2013 .

[8]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[9]  M. J. Gerry,et al.  A GTD-based parametric model for radar scattering , 1995 .

[10]  Robert J. Burkholder,et al.  Nonlinear Optimization of Radar Images From a Through-Wall Sensing System via the Lagrange Multiplier Method , 2012, IEEE Geoscience and Remote Sensing Letters.

[11]  Hao Ling,et al.  A model‐based angular extrapolation technique for iterative method‐of‐moments solvers , 1999 .

[12]  Ao Tang,et al.  On the Performance of Sparse Recovery Via lp-Minimization (0 <= p <= 1) , 2010, IEEE Trans. Inf. Theory.

[13]  Sam Kwong,et al.  Estimation of Two-Dimensional Frequencies Using Modified Matrix Pencil Method , 2007, IEEE Transactions on Signal Processing.

[14]  Z. Liu,et al.  ADAPTIVE CLUTTER SUPPRESSION FOR AIRBORNE RANDOM PULSE REPETITION INTERVAL RADAR BASED ON COMPRESSED SENSING , 2012 .

[15]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[16]  Guangyou Fang,et al.  UWB Through-Wall Imaging Based on Compressive Sensing , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[18]  Jiajia Jiang,et al.  THREE-DIMENSIONAL LOCALIZATION ALGORITHM FOR MIXED NEAR-FIELD AND FAR-FIELD SOURCES BASED ON ESPRIT AND MUSIC METHOD , 2013 .

[19]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[20]  Mengdao Xing,et al.  Achieving Higher Resolution ISAR Imaging With Limited Pulses via Compressed Sampling , 2009, IEEE Geoscience and Remote Sensing Letters.

[21]  Yachao Li,et al.  Resolution Enhancement for Inversed Synthetic Aperture Radar Imaging Under Low SNR via Improved Compressive Sensing , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[23]  Shunjun Wei,et al.  SPARSE RECONSTRUCTION FOR SAR IMAGING BASED ON COMPRESSED SENSING , 2010 .

[24]  L. Carin,et al.  On the superresolution identification of observables from swept-frequency scattering data , 1997 .

[25]  W. D. Burnside,et al.  A very efficient RCS data compression and reconstruction technique, volume 4 , 1992 .

[26]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[27]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[28]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[29]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[30]  Inder J. Gupta,et al.  Data extrapolation for high resolution radar imaging , 1994 .

[31]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[32]  Hyo-Tae Kim,et al.  One-dimensional scattering centre extraction for efficient radar target classification , 1999 .