Fast Fourier transform on multipoles for rapid calculation of magnetostatic fields

This paper describes the implementation of the fast Fourier transform on multipole (FFTM) algorithm for rapid calculation of magnetostatic fields in micromagnetics. The method is based on the multipole approximation theory, in which the computation-intensive transformation operations of the multipole in local expansions are accelerated by using FFT algorithms. Hence, this algorithm has the computational efficiency of the FFT-based approach, but is not confined to use in problems with regularly spaced elements.

[1]  P. B. Visscher,et al.  Charge-based recursive fast-multipole micromagnetics , 2004 .

[2]  W. Donath,et al.  Efficient techniques for the computer simulation of magnetic recording in complex layered materials , 2004 .

[3]  Thomas Schrefl,et al.  Micromagnetic modelling—the current state of the art , 2000 .

[4]  Kay Hameyer,et al.  Full multigrid for magnetostatics using unstructured and non-nested meshes , 2001 .

[5]  R. Victora,et al.  Micromagnetic model of perpendicular recording head with soft underlayer , 2001 .

[6]  H. N. Bertram,et al.  Concise, efficient three-dimensional fast multipole method for micromagnetics , 2001 .

[7]  H. Bertram,et al.  Numerical simulations of hysteresis in longitudinal magnetic tape , 1999 .

[8]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[9]  E. Ong,et al.  Dynamic simulation of high-density perpendicular recording head and media combination , 2006, IEEE transactions on magnetics.

[10]  Heow Pueh Lee,et al.  A fast algorithm for three-dimensional potential fields calculation: fast Fourier transform on multipoles , 2003 .

[11]  E Weinan,et al.  Accurate numerical methods for micromagnetics simulations with general geometries , 2003 .

[12]  Ricardo Ferré,et al.  Large scale micromagnetic calculations for finite and infinite 3Dferromagnetic systems using FFT , 1997 .

[13]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[14]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[15]  Werner Scholz,et al.  Scalable parallel micromagnetic solvers for magnetic nanostructures , 2003 .

[16]  Manfred Kaltenbacher,et al.  Nested multigrid methods for the fast numerical computation of 3D magnetic fields , 2000 .

[17]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[19]  H. N. Bertram,et al.  3-d micromagnetic simulation of write field rise time in perpendicular recording , 2002 .

[20]  A. Marty,et al.  A new technique for ferromagnetic resonance calculations , 2002 .

[21]  H. G. Petersen Accuracy and efficiency of the particle mesh Ewald method , 1995 .

[22]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[23]  Riccardo Hertel,et al.  Micromagnetic simulations of magnetostatically coupled Nickel nanowires , 2001 .

[24]  T. Schrefl,et al.  Dynamic micromagnetic write head fields during magnetic recording in granular media , 2004, IEEE Transactions on Magnetics.

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  K. Takano Micromagnetic-FEM models of a perpendicular writer and reader , 2005, IEEE Transactions on Magnetics.

[27]  Michael A. Epton,et al.  Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations , 1995, SIAM J. Sci. Comput..

[28]  H. Forster,et al.  Fast boundary methods for magnetostatic interactions in micromagnetics , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[29]  D. Apalkov,et al.  Fast multipole method for micromagnetic simulation of periodic systems , 2003 .

[30]  H. N. Bertram,et al.  Write field analysis and write pole design in perpendicular recording , 2002 .

[31]  V. Rokhlin,et al.  Rapid Evaluation of Potential Fields in Three Dimensions , 1988 .

[32]  R. Wood,et al.  Parametric optimization for terabit perpendicular recording , 2003, Joint NAPMRC 2003. Digest of Technical Papers.

[33]  Heow Pueh Lee,et al.  A parallel fast Fourier transform on multipoles (FFTM) algorithm for electrostatics analysis of three-dimensional structures , 2004, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[34]  S. W. Yuan,et al.  Fast adaptive algorithms for micromagnetics , 1992 .

[35]  David Fincham,et al.  Optimisation of the Ewald Sum for Large Systems , 1994 .

[36]  Igor Tsukerman,et al.  Multigrid methods for computation of magnetostatic fields in magnetic recording problems , 1998 .