Adaptive discontinuous evolution Galerkin method for dry atmospheric flow

We present a new adaptive genuinely multidimensional method within the framework of the discontinuous Galerkin method. The discontinuous evolution Galerkin (DEG) method couples a discontinuous Galerkin formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic systems, such that all of the infinitely many directions of wave propagation are considered explicitly. In order to take into account multiscale phenomena that typically appear in atmospheric flows, nonlinear fluxes are split into a linear part governing the acoustic and gravitational waves and a nonlinear part that models advection. Time integration is realized by the IMEX type approximation using the semi-implicit second-order backward differentiation formula (BDF2). Moreover in order to approximate efficiently small scale phenomena, adaptive mesh refinement using the space filling curves via the AMATOS function library is employed. Four standard meteorological test cases are used to validate the new discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the Rusanov flux, a standard one-dimensional approximate Riemann solver used for the flux integration, demonstrate better stability and accuracy, as well as the reliability of the new multidimensional DEG method.

[1]  T. Clark,et al.  Cloud-environment interface instability : rising thermal calculations in two spatial dimensions , 1991 .

[2]  Francis X. Giraldo,et al.  Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling , 2010, SIAM J. Sci. Comput..

[3]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[4]  R. Hartmann,et al.  Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .

[5]  Thomas J. Dunn,et al.  A Dynamically Adapting Weather and Dispersion Model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) , 2000 .

[6]  Gerald Warnecke,et al.  Finite volume evolution Galerkin methods for nonlinear hyperbolic systems , 2002 .

[7]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[8]  M. Dudzinski,et al.  Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts , 2013, J. Comput. Phys..

[9]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[10]  Francis X. Giraldo,et al.  A high‐order triangular discontinuous Galerkin oceanic shallow water model , 2008 .

[11]  Ulrich Sch Requirements and problems in parallel model development at DWD , 2000 .

[12]  Mária Lukácová-Medvid'ová,et al.  Well-balanced finite volume evolution Galerkin methods for the shallow water equations , 2015, J. Comput. Phys..

[13]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[14]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[15]  Mária Lukácová-Medvid'ová,et al.  Evolution Galerkin methods for hyperbolic systems in two space dimensions , 2000, Math. Comput..

[16]  Louis J. Wicker,et al.  Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .

[17]  Natalja Rakowsky,et al.  amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation , 2005 .

[18]  G. Doms,et al.  Semi-Implicit Scheme for the DWD Lokal-Modell , 2000 .

[19]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[20]  Jimy Dudhia,et al.  Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations , 2007 .

[21]  Jörn Behrens,et al.  Adaptive Atmospheric Modeling - Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications , 2006, Lecture Notes in Computational Science and Engineering.

[22]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[23]  Francis X. Giraldo,et al.  Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments , 2013, J. Comput. Phys..

[24]  C. Munz,et al.  Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .

[25]  L. E. Carr,et al.  An Element-Based Spectrally Optimized Approximate Inverse Preconditioner for the Euler Equations , 2012, SIAM J. Sci. Comput..

[26]  B. J. Block,et al.  Accelerated GPU simulation of compressible flow by the discontinuous evolution Galerkin method , 2012 .

[27]  T. Sonar,et al.  Asymptotic adaptive methods for multi-scale problems in fluid mechanics , 2001 .

[28]  Ralf Hartmann,et al.  Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .

[29]  K. W. Morton,et al.  Finite volume evolution Galerkin methods — A survey , 2010 .

[30]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[31]  Francis X. Giraldo,et al.  An adaptive discontinuous Galerkin method for modeling cumulus clouds , 2010 .

[32]  Siam J. Sci FINITE VOLUME EVOLUTION GALERKIN METHODS FOR HYPERBOLIC SYSTEMS , 2004 .

[33]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[34]  Mária Lukácová-Medvid'ová,et al.  Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions , 2009, J. Comput. Phys..

[35]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[36]  J. Oliger,et al.  Adaptive grid refinement for numerical weather prediction , 1989 .

[37]  Gerald Warnecke,et al.  Finite volume evolution Galerkin (FVEG) methods for three-dimensional wave equation system , 2007 .

[38]  Koottungal Revi Arun,et al.  An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics , 2012 .

[39]  Ralf Hartmann,et al.  Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method , 2009, SIAM J. Sci. Comput..

[40]  M. Giurfa,et al.  Circadian control of photonegative sensitivity in the haematophagous bug Triatoma infestans , 1998, Journal of Comparative Physiology A.

[41]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[42]  Mária Lukácová-Medvid'ová,et al.  Large Time Step Finite Volume Evolution Galerkin Methods , 2011, J. Sci. Comput..

[43]  H. Jonker,et al.  Subsiding Shells Around Shallow Cumulus Clouds , 2008 .

[44]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[45]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[46]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[47]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[48]  A. Robert Bubble Convection Experiments with a Semi-implicit Formulation of the Euler Equations , 1993 .

[49]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .