Adaptive discontinuous evolution Galerkin method for dry atmospheric flow
暂无分享,去创建一个
Mária Lukácová-Medvid'ová | Francis X. Giraldo | A. Müller | Leonid Yelash | Volkmar Wirth | F. Giraldo | L. Yelash | V. Wirth | M. Lukáčová-Medvid’ová | Andreas Müller
[1] T. Clark,et al. Cloud-environment interface instability : rising thermal calculations in two spatial dimensions , 1991 .
[2] Francis X. Giraldo,et al. Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling , 2010, SIAM J. Sci. Comput..
[3] J. Klemp,et al. The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .
[4] R. Hartmann,et al. Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .
[5] Thomas J. Dunn,et al. A Dynamically Adapting Weather and Dispersion Model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) , 2000 .
[6] Gerald Warnecke,et al. Finite volume evolution Galerkin methods for nonlinear hyperbolic systems , 2002 .
[7] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[8] M. Dudzinski,et al. Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts , 2013, J. Comput. Phys..
[9] Francis X. Giraldo,et al. High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .
[10] Francis X. Giraldo,et al. A high‐order triangular discontinuous Galerkin oceanic shallow water model , 2008 .
[11] Ulrich Sch. Requirements and problems in parallel model development at DWD , 2000 .
[12] Mária Lukácová-Medvid'ová,et al. Well-balanced finite volume evolution Galerkin methods for the shallow water equations , 2015, J. Comput. Phys..
[13] Vít Dolejší,et al. A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .
[14] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[15] Mária Lukácová-Medvid'ová,et al. Evolution Galerkin methods for hyperbolic systems in two space dimensions , 2000, Math. Comput..
[16] Louis J. Wicker,et al. Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .
[17] Natalja Rakowsky,et al. amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation , 2005 .
[18] G. Doms,et al. Semi-Implicit Scheme for the DWD Lokal-Modell , 2000 .
[19] K. Droegemeier,et al. The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .
[20] Jimy Dudhia,et al. Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations , 2007 .
[21] Jörn Behrens,et al. Adaptive Atmospheric Modeling - Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications , 2006, Lecture Notes in Computational Science and Engineering.
[22] Francis X. Giraldo,et al. A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..
[23] Francis X. Giraldo,et al. Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments , 2013, J. Comput. Phys..
[24] C. Munz,et al. Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .
[25] L. E. Carr,et al. An Element-Based Spectrally Optimized Approximate Inverse Preconditioner for the Euler Equations , 2012, SIAM J. Sci. Comput..
[26] B. J. Block,et al. Accelerated GPU simulation of compressible flow by the discontinuous evolution Galerkin method , 2012 .
[27] T. Sonar,et al. Asymptotic adaptive methods for multi-scale problems in fluid mechanics , 2001 .
[28] Ralf Hartmann,et al. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .
[29] K. W. Morton,et al. Finite volume evolution Galerkin methods — A survey , 2010 .
[30] P. Smolarkiewicz,et al. A class of semi-Lagrangian approximations for fluids. , 1992 .
[31] Francis X. Giraldo,et al. An adaptive discontinuous Galerkin method for modeling cumulus clouds , 2010 .
[32] Siam J. Sci. FINITE VOLUME EVOLUTION GALERKIN METHODS FOR HYPERBOLIC SYSTEMS , 2004 .
[33] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[34] Mária Lukácová-Medvid'ová,et al. Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions , 2009, J. Comput. Phys..
[35] Francis X. Giraldo,et al. A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..
[36] J. Oliger,et al. Adaptive grid refinement for numerical weather prediction , 1989 .
[37] Gerald Warnecke,et al. Finite volume evolution Galerkin (FVEG) methods for three-dimensional wave equation system , 2007 .
[38] Koottungal Revi Arun,et al. An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics , 2012 .
[39] Ralf Hartmann,et al. Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method , 2009, SIAM J. Sci. Comput..
[40] M. Giurfa,et al. Circadian control of photonegative sensitivity in the haematophagous bug Triatoma infestans , 1998, Journal of Comparative Physiology A.
[41] Pierre Degond,et al. An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..
[42] Mária Lukácová-Medvid'ová,et al. Large Time Step Finite Volume Evolution Galerkin Methods , 2011, J. Sci. Comput..
[43] H. Jonker,et al. Subsiding Shells Around Shallow Cumulus Clouds , 2008 .
[44] W. Grabowski,et al. The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .
[45] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[46] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[47] William C. Skamarock,et al. Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .
[48] A. Robert. Bubble Convection Experiments with a Semi-implicit Formulation of the Euler Equations , 1993 .
[49] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .