A class of algorithms for mixed-integer bilevel min–max optimization

In this paper, we introduce a new class of algorithms for solving the mixed-integer bilevel min–max optimization problem. This problem involves two players, a leader and a follower, who play a Stackelberg game. In particular, the leader seeks to minimize over a set of discrete variables the maximum objective that the follower can achieve. The complicating features of our problem are that a subset of the follower’s decisions are restricted to be integer-valued, and that the follower’s decisions are constrained by the leader’s decisions. We first describe several bilevel min–max programs that can be used to obtain lower and upper bounds on the optimal objective value of the problem. We then present algorithms for this problem that finitely terminate with an optimal solution when the leader variables are restricted to take binary values. Finally, we report the results of a computational study aimed at evaluating the quality of our algorithms on two families of randomly generated problems.

[1]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[2]  Gerald G. Brown,et al.  Analyzing the Vulnerability of Critical Infrastructure to Attack and Planning Defenses , 2005 .

[3]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[4]  Gerhard J. Woeginger,et al.  A Complexity and Approximability Study of the Bilevel Knapsack Problem , 2013, IPCO.

[5]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[6]  Natalia Alguacil,et al.  Analysis of Electric Grid Interdiction With Line Switching , 2010, IEEE Transactions on Power Systems.

[7]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[8]  Oleg A. Prokopyev,et al.  Exact solution approach for a class of nonlinear bilevel knapsack problems , 2015, J. Glob. Optim..

[9]  Roger J.-B. Wets,et al.  On the continuity of the value of a linear program and of related polyhedral-valued multifunctions , 1982 .

[10]  L. N. Vicente,et al.  Discrete linear bilevel programming problem , 1996 .

[11]  R. Vohra,et al.  Finding the most vital arcs in a network , 1989 .

[12]  Eduardo L. Pasiliao,et al.  Minimum vertex blocker clique problem , 2014, Networks.

[13]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[14]  Saïd Hanafi,et al.  A dynamic programming algorithm for the bilevel knapsack problem , 2009, Oper. Res. Lett..

[15]  H. W. Corley,et al.  Finding the n Most Vital Nodes in a Flow Network , 1974 .

[16]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[17]  J. Danskin The Theory of Max-Min, with Applications , 1966 .

[18]  A. K. Mittal,et al.  The k most vital arcs in the shortest path problem , 1990 .

[19]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[20]  H. W. Corley,et al.  Most vital links and nodes in weighted networks , 1982, Oper. Res. Lett..

[21]  David P. Morton,et al.  Models for nuclear smuggling interdiction , 2007 .

[22]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[23]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[24]  J. C. Smith,et al.  Algorithms for discrete and continuous multicommodity flow network interdiction problems , 2007 .

[25]  Delbert Ray Fulkerson,et al.  Maximizing the minimum source-sink path subject to a budget constraint , 1977, Math. Program..

[26]  James E. Ward,et al.  Approaches to sensitivity analysis in linear programming , 1991 .

[27]  B. Golden A problem in network interdiction , 1978 .

[28]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[29]  Stephan Dempe,et al.  Bilevel Programming With Knapsack Constraints , 2000 .

[30]  Wayne F. Bialas,et al.  On two-level optimization , 1982 .

[31]  J. Bard,et al.  An algorithm for the discrete bilevel programming problem , 1992 .

[32]  Chase Rainwater,et al.  Multi-period network interdiction problems with applications to city-level drug enforcement , 2012 .

[33]  John W. Chinneck,et al.  Operations Research and Cyber-Infrastructure , 2009 .

[34]  Anne FINDING THE n MOST VITAL LINKS IN FLOW NETWORKS , 2022 .

[35]  Richard D. Wollmer,et al.  Removing Arcs from a Network , 1964 .

[36]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[37]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[38]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[39]  Saïd Hanafi,et al.  One-level reformulation of the bilevel Knapsack problem using dynamic programming , 2013, Discret. Optim..

[40]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .