Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies

We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. It thus enables a promising way to design electrically tunable absorbers, which may contribute toward the realization of frequency selective detectors for sensing applications.

[1]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[2]  T. Cui,et al.  Ultrathin multiband gigahertz metamaterial absorbers , 2011 .

[3]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[4]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[5]  David M. Fried,et al.  THE DESIGN, FABRICATION AND CHARACTERIZATION OF , 2004 .

[6]  Longjiang Deng,et al.  A wide-angle planar metamaterial absorber based on split ring resonator coupling , 2011 .

[7]  D. R. Chowdhury,et al.  Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers , 2012, 1207.0540.

[8]  Debdeep Jena,et al.  Unique prospects for graphene-based terahertz modulators , 2011 .

[9]  Borislav Vasić,et al.  Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies , 2013 .

[10]  Koray Aydin,et al.  Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures , 2015 .

[11]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[12]  Mattias Beck,et al.  Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. , 2013, Nano letters.

[13]  F. Lederer,et al.  A perfect absorber made of a graphene micro-ribbon metamaterial. , 2012, Optics express.

[14]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[15]  Iam-Choon Khoo,et al.  Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. , 2011, Optics express.

[16]  Zhen Tian,et al.  Active graphene–silicon hybrid diode for terahertz waves , 2015, Nature Communications.

[17]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[18]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[19]  A. Lavrinenko,et al.  Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. , 2013, Optics express.

[20]  Abul K. Azad,et al.  Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers , 2010 .

[21]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[22]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[23]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[24]  Iam-Choon Khoo,et al.  Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array , 2012 .

[25]  T. Cui,et al.  Polarization-independent wide-angle triple-band metamaterial absorber. , 2011, Optics express.

[26]  Ben-Xin Wang,et al.  A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber , 2014 .

[27]  S. Anantha Ramakrishna,et al.  Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks , 2013 .

[28]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[29]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[30]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[31]  Mark L Brongersma,et al.  Electrically tunable coherent optical absorption in graphene with ion gel. , 2015, Nano letters.

[32]  Xiang Zhang,et al.  Double-layer graphene optical modulator. , 2012, Nano letters.

[33]  A. Mitchell,et al.  Mechanically tunable terahertz metamaterials , 2013 .

[34]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[35]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[36]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[37]  Berardi Sensale-Rodriguez,et al.  Graphene-insulator-graphene active plasmonic terahertz devices , 2013 .

[38]  Xiang Zhai,et al.  Theoretical Investigation of Broadband and Wide-Angle Terahertz Metamaterial Absorber , 2014, IEEE Photonics Technology Letters.

[39]  Kepeng Qiu,et al.  Mechanically stretchable and tunable metamaterial absorber , 2015 .

[40]  Bo O. Zhu,et al.  Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. , 2014, Optics express.

[41]  Jia-Ming Liu,et al.  Terahertz Optoelectronic Property of Graphene: Substrate-Induced Effects on Plasmonic Characteristics , 2014 .

[42]  Xueming Liu,et al.  Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. , 2011, Optics express.

[43]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[44]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[45]  Ajay Nahata,et al.  Graphene-based tunable metamaterial terahertz filters , 2014 .

[46]  J. Seiber Status and Prospects , 2005 .

[47]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[48]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[49]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[50]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[51]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[52]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .

[53]  Ekmel Ozbay,et al.  Coupling enhancement of split ring resonators on graphene , 2014 .

[54]  Weiren Zhu,et al.  Metamaterial absorber with dendritic cells at infrared frequencies , 2009 .

[55]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[56]  Ekmel Ozbay,et al.  Experimental verification of metamaterial based subwavelength microwave absorbers , 2010 .

[57]  Jianguo Tian,et al.  Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial , 2013 .