Towards an efficient atomic frequency comb quantum memory

We present an efficient photon-echo experiment based on atomic frequency combs [Phys. Rev. A 79 (2009) 052329]. Echoes containing an energy of up to 35% of that of the input pulse are observed in a Pr3+ -doped Y2SiO5 crystal. This material allows for the precise spectral holeburning needed to make a sharp and highly absorbing comb structure. We compare our results with a simple theoretical model with satisfactory agreement. Our results show that atomic frequency combs has the potential for high-efficiency storage of single photons as required in future long-distance communication based on quantum repeaters. (c) 2010 Elsevier B.V. All rights reserved.

[1]  W. Babbitt,et al.  Optical coherent-transient true-time-delay regenerator. , 1996, Optics letters.

[2]  A. Walther,et al.  Experimental quantum-state tomography of a solid-state qubit , 2007, 0708.0764.

[3]  J J Longdell,et al.  Photon echoes produced by switching electric fields. , 2006, Physical review letters.

[4]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[5]  Australian National University,et al.  Photon-Echo Quantum Memory , 2008, 0810.0172.

[6]  Christoph Simon,et al.  A solid-state light–matter interface at the single-photon level , 2008, Nature.

[7]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[8]  R. Reibel,et al.  Dynamics of broadband accumulated spectral gratings in Tm 3+ :YAG , 2001 .

[9]  N. Uesugi,et al.  Spectrally programmed stimulated photon echo. , 1991, Optics letters.

[10]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[11]  D. Wiersma,et al.  Picosecond Photon Echoes Stimulated from an Accumulated Grating , 1979 .

[12]  Stefan Kröll,et al.  Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles , 2005 .

[13]  N. Carlson,et al.  Temporally programmed free-induction decay , 1984 .

[14]  Christoph Simon,et al.  Why the two-pulse photon echo is not a good quantum memory protocol , 2008, 0810.0659.

[15]  S. Kröll,et al.  Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition. , 2001, Physical review letters.

[16]  Christoph Simon,et al.  Demonstration of atomic frequency comb memory for light with spin-wave storage. , 2009, Physical review letters.

[17]  N. Gisin,et al.  Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening , 2006, quant-ph/0611165.

[18]  D. Suter,et al.  Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+: Y2SiO5 , 2004 .

[19]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[20]  J. J. Longdell,et al.  Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits , 2002, quant-ph/0208182.

[21]  N. Gisin,et al.  Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.

[22]  M. Afzelius,et al.  Efficient light storage in a crystal using an atomic frequency comb , 2009, 0902.2048.

[23]  W Tittel,et al.  Fidelity of an optical memory based on stimulated photon echoes. , 2007, Physical review letters.

[24]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[25]  Roger M. Macfarlane,et al.  Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids , 1987 .

[26]  R. Macfarlane,et al.  Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5. , 1995, Physical review. B, Condensed matter.

[27]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[28]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[29]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[30]  Dieter Suter,et al.  Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal , 2005 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  M. Nilsson,et al.  Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening , 2005, quant-ph/0502184.

[33]  Nicolas Gisin,et al.  Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. , 2010, Nature communications.

[34]  R. Macfarlane High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective , 2002 .

[35]  N. Uesugi,et al.  Nonlinear laser spectroscopy of eu3+: Y2sio5 and its application to time-domain optical memory , 1992 .

[36]  W. Babbitt,et al.  Recovery of spectral features readout with frequency-chirped laser fields. , 2005, Optics letters.

[37]  A. A. Maradudin,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[38]  A. Kalachev,et al.  Experimental superradiance and slow-light effects for quantum memories , 2009, 0904.4621.

[39]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[40]  Andreas Walther,et al.  Understanding laser stabilization using spectral hole burning , 2007 .

[41]  S. Kröll,et al.  Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid , 2009 .