Collective behavior learning by differentiating personal preference from peer influence

[1]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[2]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[3]  Piotr Indyk,et al.  Enhanced hypertext categorization using hyperlinks , 1998, SIGMOD '98.

[4]  Avi Pfeffer,et al.  Probabilistic Frame-Based Systems , 1998, AAAI/IAAI.

[5]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[6]  Jennifer Neville,et al.  Iterative Classification in Relational Data , 2000 .

[7]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[8]  S. Morgan Counterfactuals, Causal Effect Heterogeneity, and the Catholic School Effect on Learning. , 2001 .

[9]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[10]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[11]  Foster Provost,et al.  A Simple Relational Classifier , 2003 .

[12]  Jennifer Neville,et al.  Learning relational probability trees , 2003, KDD '03.

[13]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[14]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[15]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[17]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[18]  D. Rubin Causal Inference Using Potential Outcomes , 2005 .

[19]  Nozha Boujemaa,et al.  Generalized histogram intersection kernel for image recognition , 2005, IEEE International Conference on Image Processing 2005.

[20]  J. Brand,et al.  Regression and matching estimates of the effects of elite college attendance on educational and career achievement , 2006 .

[21]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[22]  Robert E. Schapire,et al.  Hierarchical multi-label prediction of gene function , 2006, Bioinform..

[23]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[24]  Stephen J. Wright,et al.  Dissimilarity in Graph-Based Semi-Supervised Classification , 2007, AISTATS.

[25]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[26]  Tina Eliassi-Rad,et al.  Leveraging Label-Independent Features for Classification in Sparsely Labeled Networks: An Empirical Study , 2008, SNAKDD.

[27]  D. Green,et al.  Field Experiments and Natural Experiments , 2008 .

[28]  Lei Tang,et al.  Large scale multi-label classification via metalabeler , 2009, WWW '09.

[29]  Bhavani M. Thuraisingham,et al.  Social network classification incorporating link type values , 2009, 2009 IEEE International Conference on Intelligence and Security Informatics.

[30]  Víctor Robles,et al.  Feature selection for multi-label naive Bayes classification , 2009, Inf. Sci..

[31]  Arun Sundararajan,et al.  Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks , 2009, Proceedings of the National Academy of Sciences.

[32]  Huan Liu,et al.  Relational learning via latent social dimensions , 2009, KDD.

[33]  William W. Cohen,et al.  Semi-Supervised Classification of Network Data Using Very Few Labels , 2010, 2010 International Conference on Advances in Social Networks Analysis and Mining.

[34]  Henry E. Brady,et al.  The Oxford Handbook of Political Methodology , 2010 .

[35]  Gary King,et al.  MatchIt: Nonparametric Preprocessing for Parametric Causal Inference , 2011 .

[36]  Christos Faloutsos,et al.  It's who you know: graph mining using recursive structural features , 2011, KDD.

[37]  Yu Xie,et al.  Estimating Heterogeneous Treatment Effects with Observational Data , 2012, Sociological methodology.

[38]  Huan Liu,et al.  Scalable Learning of Collective Behavior , 2012, IEEE Transactions on Knowledge and Data Engineering.

[39]  Arun Sundararajan,et al.  Engineering social contagions: Optimal network seeding in the presence of homophily , 2013, Network Science.

[40]  Gita Reese Sukthankar,et al.  Multi-label relational neighbor classification using social context features , 2013, KDD.

[41]  Marc Ratkovic,et al.  Estimating treatment effect heterogeneity in randomized program evaluation , 2013, 1305.5682.

[42]  Zheru Chi,et al.  Multi-instance multi-label image classification: A neural approach , 2013, Neurocomputing.

[43]  J. Brand,et al.  California Center for Population Research On-line Working Paper Series Causal Effect Heterogeneity Causal Effect Heterogeneity Author Biography Page Causal Effect Heterogeneity , 2022 .

[44]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[45]  Yunming Ye,et al.  Multi-label collective classification via Markov chain based learning method , 2014, Knowl. Based Syst..

[46]  L. Getoor,et al.  Link-Based Classification , 2003, Encyclopedia of Machine Learning and Data Mining.

[47]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[48]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[49]  Honggang Zhang,et al.  Multi-label learning with prior knowledge for facial expression analysis , 2015, Neurocomputing.

[50]  Bassam Al-Salemi,et al.  RFBoost: An improved multi-label boosting algorithm and its application to text categorisation , 2016, Knowl. Based Syst..

[51]  M. Narasimha Murty,et al.  Structural Neighborhood Based Classification of Nodes in a Network , 2016, KDD.

[52]  Jing-Yu Yang,et al.  Multi-label learning with label-specific feature reduction , 2016, Knowl. Based Syst..