An explicit Euler scheme with strong rate of convergence for non-Lipschitz SDEs

We consider the approximation of stochastic dierential equations (SDEs) with non-Lipschitz drift or diusion coecients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity conditions, we obtain the optimal strong error rate. We consider SDEs popular in the mathematical finance literature, including the Cox-Ingersoll-Ross (CIR), the 3=2 and the Ait-Sahalia models, as well as a family of mean-reverting processes with locally smooth coecients.

[1]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[2]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[3]  Andreas Neuenkirch,et al.  First order strong approximations of scalar SDEs with values in a domain , 2012, 1209.0390.

[4]  N. V. Krylov,et al.  A Simple Proof of the Existence of a Solution of Itô’s Equation with Monotone Coefficients , 1991 .

[5]  L. Szpruch,et al.  Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model , 2011 .

[6]  W. Feller Diffusion processes in one dimension , 1954 .

[7]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[8]  I. Gyöngy A note on Euler's Approximations , 1998 .

[9]  Peter E. Kloeden,et al.  Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients , 2009, Numerische Mathematik.

[10]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[11]  Mireille Bossy,et al.  An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form |x|^a, a in [1/2,1) , 2006 .

[12]  Liqing Yan The Euler scheme with irregular coefficients , 2002 .

[13]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[14]  Andreas Neuenkirch,et al.  CONVERGENCE OF NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS IN MATHEMATICAL FINANCE , 2012, 1204.6620.

[15]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[16]  Dai Taguchi,et al.  Strong rate of convergence for the Euler-Maruyama approximation of stochastic differential equations with irregular coefficients , 2013, Math. Comput..

[17]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  L. Szpruch,et al.  An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[20]  Aurélien Alfonsi,et al.  Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process , 2013 .

[21]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[22]  Mireille Bossy,et al.  Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence , 2006 .

[23]  Desmond J. Higham,et al.  Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff , 2009, Finance Stochastics.

[24]  Miklós Rásonyi,et al.  A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients , 2011 .

[25]  Stefano De Marco,et al.  Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions , 2011 .

[26]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[27]  M. Hutzenthaler,et al.  Numerical Approximations of Stochastic Differential Equations With Non-globally Lipschitz Continuous Coefficients , 2012, 1203.5809.