Endless polarization control algorithm using adjustable linear retarders with fixed axes

New designs are presented for polarization-transforming elements equivalent to rotating quarter-wave plates and rotating half-wave plates. These are constructed from sequences of adjustable linear retarders with fixed retardation axes, such as liquid-crystal cells (untwisted nematic) and electrooptical modulators. Then, a new endless polarization control algorithm is proposed and demonstrated. The variable linear retarders in this endless polarization controller operate over a finite range of retardance without any reset or unwinding procedure. This endless algorithm can produce all possible sequences of continuous polarization state transformations.

[1]  T. Okoshi,et al.  Polarization-state control schemes for heterodyne or homodyne optical fiber communications , 1985, IEEE Transactions on Electron Devices.

[2]  F. Heismann Integrated-optic polarization transformer for reset-free endless polarization control , 1989 .

[3]  K. Nosu,et al.  Optical polarisation control utilising an optical heterodyne detection scheme , 1985 .

[4]  R. Jones,et al.  A New Calculus for the Treatment of Optical SystemsII. Proof of Three General Equivalence Theorems , 1941 .

[5]  Lee W. Casperson,et al.  Polarization control for coherent fiber-optic systems using nematic liquid crystals , 1990 .

[6]  Reinhold Noe,et al.  Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers , 1999 .

[7]  F. Heismann Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems , 1994 .

[8]  Gd Giok-Djan Khoe,et al.  New endless polarization control method using three fiber squeezers , 1989 .

[9]  Matthew H. Smith,et al.  Characterizing polarization controllers with Mueller matrix polarimetry , 2001, ITCom.

[10]  R. Azzam,et al.  Polarized light in optics and spectroscopy , 1990 .

[11]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[12]  Reinhold Noe,et al.  Endless polarization control systems for coherent optics , 1988 .

[13]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[14]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[15]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[16]  G. R. Walker,et al.  Polarization control for coherent communications , 1990 .