Spatial phylogenetics of Fagales: Investigating the history of temperate forests

Aim Quantifying the phylogenetic diversity of temperate trees is essential for understanding what processes are implicated in shaping the modern distribution of temperate broadleaf forest and other major forest biomes. Here we focus on Fagales, an iconic member of forests worldwide, to uncover global diversity and endemism patterns and investigate potential drivers responsible for the spatial distribution of fagalean forest communities. Location Global. Taxon Fagales. Methods We combined phylogenetic data covering 60.2% of living species, fine-scale distribution models covering 90% of species, and nodulation data covering all species to investigate the distribution of species richness at fine spatial scales and compare this to relative phylogenetic diversity (RPD) and phylogenetic endemism. Further, we quantify phylogenetic betadiversity and bioregionalization of Fagales and determine hotspots of Fagales species engaging in root nodule symbiosis (RNS) with nitrogen-fixing actinomycetes. Results We find the highest richness in temperate east Asia, eastern North America, and equatorial montane regions of Asia and Central America. By contrast, RPD is highest at higher latitudes, where RNS also predominates. We found a strong spatial structuring of regionalizations of Fagales floras as defined by phylogeny and traits related to RNS, reflecting distinct Northern and Southern Hemisphere floras (with the exception of a unique Afro-Boreal region) and highly distinct tropical montane communities. Main conclusions Species richness and phylogenetic regionalization accord well with traditional biogeographic concepts for temperate forests, but RPD does not. This may reflect ecological filtering specific to Fagales, as RNS strategies are almost universal in the highest RPD regions. Our results highlight the importance of global-scale, clade-specific spatial phylogenetics and its utility for understanding the history behind temperate forest diversity.

[1]  D. Soltis,et al.  Fagalean phylogeny in a nutshell: Chronicling the diversification history of Fagales , 2023, bioRxiv.

[2]  D. Soltis,et al.  Testing the evolutionary drivers of nitrogen-fixing symbioses in challenging soil environments , 2022, bioRxiv.

[3]  Gregory W. Stull,et al.  Two shifts in evolutionary lability underlie independent gains and losses of root-nodule symbiosis in a single clade of plants , 2022, bioRxiv.

[4]  Seth M. Bybee,et al.  Diversity of Nearctic Dragonflies and Damselflies (Odonata) , 2022, Diversity.

[5]  R. Guralnick,et al.  Aridity drives phylogenetic diversity and species richness patterns of nitrogen‐fixing plants in North America , 2022, Global Ecology and Biogeography.

[6]  Zhiheng Wang,et al.  An integrated high‐resolution mapping shows congruent biodiversity patterns of Fagales and Pinales , 2022, The New phytologist.

[7]  Daniel Spalink,et al.  A global analysis of mosses reveals low phylogenetic endemism and highlights the importance of long‐distance dispersal , 2022, Journal of Biogeography.

[8]  P. Baas,et al.  Wood Anatomy of Modern and Fossil Fagales in Relation to Phylogenetic Hypotheses, Familial Classification, and Patterns of Character Evolution , 2021, International Journal of Plant Sciences.

[9]  Gregory W. Stull,et al.  Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. , 2021, Molecular phylogenetics and evolution.

[10]  L. Peruzzi,et al.  A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas , 2021, bioRxiv.

[11]  J. Suissa,et al.  Mountains, climate and niche heterogeneity explain global patterns of fern diversity , 2021, Journal of Biogeography.

[12]  D. Soltis,et al.  High‐throughput methods for efficiently building massive phylogenies from natural history collections , 2021, Applications in plant sciences.

[13]  Ü. Niinemets,et al.  Global macroecology of nitrogen‐fixing plants , 2020, Global Ecology and Biogeography.

[14]  J. Ardley,et al.  Evolution and biogeography of actinorhizal plants and legumes: A comparison , 2020, Journal of Ecology.

[15]  D. Soltis,et al.  Angiosperms at the edge: Extremity, diversity, and phylogeny. , 2020, Plant, cell & environment.

[16]  Matthew A. Gitzendanner,et al.  Recent accelerated diversification in rosids occurred outside the tropics , 2020, Nature Communications.

[17]  Julie M. Allen,et al.  Spatial phylogenetics of the North American flora , 2020 .

[18]  J. Olden,et al.  Changes in taxonomic and phylogenetic diversity in the Anthropocene , 2020, Proceedings of the Royal Society B.

[19]  T. Baker,et al.  Freezing and water availability structure the evolutionary diversity of trees across the Americas , 2019, Science Advances.

[20]  Zhiduan Chen,et al.  Phylogenetic delineation of regional biota: A case study of the Chinese flora. , 2019, Molecular phylogenetics and evolution.

[21]  Norman A. Bourg,et al.  Patterns of nitrogen‐fixing tree abundance in forests across Asia and America , 2019, Journal of Ecology.

[22]  T. R. Hvidsten,et al.  Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae1[OPEN] , 2019, Plant Physiology.

[23]  Daniele Silvestro,et al.  CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases , 2019, Methods in Ecology and Evolution.

[24]  W. M. Whitten,et al.  Spatial Phylogenetics of Florida Vascular Plants: The Effects of Calibration and Uncertainty on Diversity Estimates , 2018, iScience.

[25]  J. Cavender-Bares Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. , 2018, The New phytologist.

[26]  Julie M. Allen,et al.  For common community phylogenetic analyses, go ahead and use synthesis phylogenies , 2019, Ecology.

[27]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2018, bioRxiv.

[28]  A. Zanne,et al.  Functional biogeography of angiosperms: life at the extremes. , 2018, The New phytologist.

[29]  N. R. Friedman,et al.  Macroecology and macroevolution of the latitudinal diversity gradient in ants , 2018, Nature Communications.

[30]  Walter Jetz,et al.  A suite of global, cross-scale topographic variables for environmental and biodiversity modeling , 2018, Scientific Data.

[31]  Stephen A. Smith,et al.  Evolutionary history of the angiosperm flora of China , 2018, Nature.

[32]  Daniel S. Park,et al.  Understanding the Processes Underpinning Patterns of Phylogenetic Regionalization. , 2017, Trends in ecology & evolution.

[33]  William A. Freyman,et al.  Spatial phylogenetics of the native California flora , 2017, BMC Biology.

[34]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[35]  Robert P. Anderson,et al.  Opening the black box: an open-source release of Maxent , 2017 .

[36]  William A. Freyman,et al.  Spatial phylogenetics of the vascular flora of Chile. , 2017, Molecular phylogenetics and evolution.

[37]  M. Donoghue,et al.  Convergence, Consilience, and the Evolution of Temperate Deciduous Forests* , 2017, The American Naturalist.

[38]  C. Graham,et al.  Phylogenetic scale in ecology and evolution , 2016, bioRxiv.

[39]  J.G.B. Leenaars,et al.  WoSIS: providing standardised soil profile data for the world , 2016 .

[40]  A. Staver,et al.  Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. , 2016, Ecology.

[41]  Christian L. Cox,et al.  Coral snakes predict the evolution of mimicry across New World snakes , 2016, Nature Communications.

[42]  M. Arroyo,et al.  Non‐congruent fossil and phylogenetic evidence on the evolution of climatic niche in the Gondwana genus Nothofagus , 2016 .

[43]  Kathryn Larson-Johnson Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. , 2016, The New phytologist.

[44]  M. Donoghue,et al.  Temperate radiations and dying embers of a tropical past: the diversification of Viburnum. , 2015, The New phytologist.

[45]  Robert A. Boria,et al.  ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models , 2014 .

[46]  B. Mishler,et al.  Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia , 2014, Nature Communications.

[47]  M. Gandolfo,et al.  Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). , 2012, Systematic biology.

[48]  Shawn W. Laffan,et al.  Biodiverse, a tool for the spatial analysis of biological and related diversity , 2010 .

[49]  Michael J. Donoghue,et al.  A phylogenetic perspective on the distribution of plant diversity , 2008, Proceedings of the National Academy of Sciences.

[50]  D. Soltis,et al.  Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. , 2007, Systematic biology.

[51]  J. Sprent,et al.  Comparison Between Actinorhizal And Legume Symbiosis , 2007 .

[52]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[53]  M. Crisp,et al.  Not so ancient: the extant crown group of Nothofagus represents a post-Gondwanan radiation , 2005, Proceedings of the Royal Society B: Biological Sciences.

[54]  M. Donoghue,et al.  Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.

[55]  J. Cavender-Bares,et al.  Phylogenetic Overdispersion in Floridian Oak Communities , 2004, The American Naturalist.

[56]  D. Soltis,et al.  Phylogenetic Relationships in Fagales Based on DNA Sequences from Three Genomes , 2004, International Journal of Plant Sciences.

[57]  J. Wen Evolution of Eastern Asian and Eastern North American Disjunct Distributions in Flowering Plants , 1999 .

[58]  S. Manchester Biogeographical Relationships of North American Tertiary Floras , 1999 .

[59]  T. Bisseling,et al.  Rhizobial and Actinorhizal Symbioses: What Are the Shared Features? , 1996, The Plant cell.

[60]  J. A. Wolfe Late Cretaceous-Cenozoic history of deciduousness and the terminal Cretaceous event , 1987, Paleobiology.

[61]  D. I. Axelrod Biogeography of oaks in the Arcto-Tertiary Province , 1983 .

[62]  Arthur Cronquist,et al.  Floristic Regions of the World , 1978 .

[63]  J. A. Wolfe Some Aspects of Plant Geography of the Northern Hemisphere During the Late Cretaceous and Tertiary , 1975 .

[64]  H. Akaike A new look at the statistical model identification , 1974 .

[65]  D. I. Axelrod ORIGIN OF DECIDUOUS AND EVERGREEN HABITS IN TEMPERATE FORESTS , 1966, Evolution; international journal of organic evolution.

[66]  A. J. Sharp,et al.  Characteristics of the Vegetation in Certain Temperate Regions of Eastern Mexico , 1950 .

[67]  A. Engler Die pflanzengeographische Gliederung Nordamerikas : erläutert an der nordamerikanischen Anlage des neuen Königlichen botanischen Gartens zu Dahlem-Steglitz bei Berlin, mit einer Verbreitungskarte und einem Orientierungsplan , 1905 .