Computations with Clifford and Grassmann Algebras

Abstract.Various computations in Grassmann and Clifford algebras can be performed with a Maple package CLIFFORD. It can solve algebraic equations when searching for general elements satisfying certain conditions, solve an eigenvalue problem for a Clifford number, and find its minimal polynomial. It can compute with quaternions, octonions, and matrices with entries in Cℓ(B) - the Clifford algebra of a vector space V endowed with an arbitrary bilinear form B. It uses standard (undotted) Grassmann basis in Cℓ(Q) but when the antisymmetric part of B is non zero, it can also compute in a dotted Grassmann basis. Some examples of computations are discussed.

[1]  Bertfried Fauser,et al.  Mathematics of Clifford - a Maple package for Clifford and Graßmann algebras , 2002 .

[2]  R. Abłamowicz Matrix Exponential via Clifford Algebras , 1998, math-ph/9807038.

[3]  Clifford Hopf gebra for two-dimensional space , 2000, math/0011263.

[4]  Bertfried Fauser A Treatise on Quantum Clifford Algebras , 2002 .

[5]  Hecke Algebra Representations in Ideals Generated by q-Young Clifford Idempotents , 1999, math/9908062.

[6]  G. C. Rota,et al.  Plethystic Hopf algebras. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Bertfried Fauser,et al.  Clifford and Graßmann Hopf algebras via the BIGEBRA package for Maple , 2005, Comput. Phys. Commun..

[8]  A Hopf laboratory for symmetric functions , 2003, math-ph/0308043.

[9]  Green's Functions in Quantum Electrodynamics , 1954 .

[10]  Rafał Abłamowicz Clifford Algebra Computations with Maple , 1996 .

[11]  Joel N. Anderson,et al.  Clifford Algebra Space Singularities of Inline Planar Platforms , 2002 .

[12]  Tsit Yuen Lam,et al.  The algebraic theory of quadratic forms , 1973 .

[13]  Products, Coproducts, and Singular Value Decomposition , 2004, math-ph/0403001.

[14]  K. Podlaski,et al.  Idempotents of Clifford Algebras , 2003, math-ph/0312015.

[15]  Rafał Abłamowicz,et al.  Spinor representations of Clifford algebras: a symbolic approach , 1998 .

[16]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[17]  Maciejowsk Multivariable Feedback Design , 1989 .

[18]  Pertti Lounesto,et al.  Scalar products of spinors and an extension of Brauer-Wall groups , 1981 .

[19]  P. Lounesto,et al.  On Clifford algebras of a bilinear form with an antisymmetric part , 1996 .

[20]  G. Strang Introduction to Linear Algebra , 1993 .

[21]  R. Abłamowicz,et al.  On the Decomposition of Clifford Algebras of Arbitrary Bilinear Form , 1999, math/9911180.

[22]  Conformal transformations and Clifford algebras , 1980 .

[23]  Bertfried Fauser On the Hopf algebraic origin of Wick normal ordering , 2001 .

[24]  Robert Oeckl,et al.  Quantum field theory and Hopf algebra cohomology , 2003 .

[25]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .