Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation

In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a ?-estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation.These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. It is shown that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.

[1]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[2]  Alexandros Syrakos,et al.  Finite volume adaptive solutions using SIMPLE as smoother , 2006, ArXiv.

[3]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[4]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[5]  Haiyang Gao,et al.  A Residual-Based Procedure for hp-Adaptation on 2D Hybrid Meshes , 2011 .

[6]  Christopher J. Roy,et al.  Verification of a Compressible CFD Code Using the Method of Manufactured Solutions , 2002 .

[7]  Esteban Ferrer A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes for simulating cross-flow turbines , 2012 .

[8]  Eusebio Valero,et al.  Comparison of Mesh Adaptation Using the Adjoint Methodology and Truncation Error Estimates , 2012 .

[9]  B. Williams Development and Evaluation of an à Posteriori Method for Estimating and Correcting GridInduced Errors in Solutions of the NavierStokes Equations , 2009 .

[10]  J. C. Newman,et al.  Adjoint-based error estimation and grid adaptation for functional outputs: Application to two-dimensional, inviscid, incompressible flows , 2009 .

[11]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[12]  Esteban Ferrer,et al.  A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations , 2011 .

[13]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[14]  David L. Darmofal,et al.  An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations , 2007 .

[15]  Eusebio Valero,et al.  The estimation of truncation error by τ-estimation revisited , 2012, J. Comput. Phys..

[16]  Gonzalo Rubio,et al.  Quasi-a priori truncation error estimation and higher order extrapolation for non-linear partial differential equations , 2013, J. Comput. Phys..

[17]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[18]  Marsha Berger Adaptive Finite Difference Methods in Fluid Dynamics , 2011 .

[19]  Klaus Bernert,et al.  τ-Extrapolation - Theoretical Foundation, Numerical Experiment, and Application to Navier-Stokes Equations , 1997, SIAM J. Sci. Comput..

[20]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[21]  S. Sherwin,et al.  Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations , 2005 .

[22]  Spencer J. Sherwin,et al.  Stability of Projection Methods for Incompressible Flows Using High Order Pressure-Velocity Pairs of Same Degree: Continuous and Discontinuous Galerkin Formulations , 2014 .

[23]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[24]  Gonzalo Rubio,et al.  Quasi-a priori mesh adaptation and extrapolation to higher order using τ-estimation , 2014 .

[25]  Tyrone S. Phillips Residual-based Discretization Error Estimation for Computational Fluid Dynamics , 2014 .

[26]  Catherine Mavriplis,et al.  Adaptive mesh strategies for the spectral element method , 1992 .

[27]  Christopher J. Roy,et al.  Adjoint and Truncation Error Based Adaptation for Finite Volume Schemes with Error Estimates , 2015 .

[28]  Ewald Krämer,et al.  A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows , 2008 .

[29]  Esteban Ferrer,et al.  A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes , 2012, J. Comput. Phys..

[30]  Andrea Crivellini,et al.  An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[31]  C. Ross Ethier,et al.  A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..

[32]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[33]  Ralf Hartmann,et al.  Error estimation and adjoint-based adaptation in aerodynamics , 2006 .

[34]  Christopher J. Roy,et al.  Residual Methods for Discretization Error Estimation , 2011 .

[35]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[36]  Gonzalo Rubio,et al.  The Estimation of Truncation Error by $$\tau $$-Estimation for Chebyshev Spectral Collocation Method , 2013, J. Sci. Comput..

[37]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..

[38]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[39]  Guido Kanschat,et al.  An Equal-Order DG Method for the Incompressible Navier-Stokes Equations , 2009, J. Sci. Comput..

[40]  Richard P. Dwight,et al.  Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation , 2008, J. Comput. Phys..

[41]  Per-Olof Persson,et al.  RANS Solutions Using High Order Discontinuous Galerkin Methods , 2007 .

[42]  Gonzalo Rubio,et al.  Quasi-A Priori Truncation Error Estimation in the DGSEM , 2015, J. Sci. Comput..

[43]  Christopher J. Roy,et al.  Review of Discretization Error Estimators in Scientific Computing , 2010 .

[44]  John G. Bartzis,et al.  Numerical experiments on the efficiency of local grid refinement based on truncation error estimates , 2012, J. Comput. Phys..