Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation
暂无分享,去创建一个
Esteban Ferrer | Gonzalo Rubio | Eusebio Valero | Moritz Kompenhans | Moritz Kompenhans | E. Ferrer | G. Rubio | E. Valero
[1] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[2] Alexandros Syrakos,et al. Finite volume adaptive solutions using SIMPLE as smoother , 2006, ArXiv.
[3] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[4] Rémi Abgrall,et al. High‐order CFD methods: current status and perspective , 2013 .
[5] Haiyang Gao,et al. A Residual-Based Procedure for hp-Adaptation on 2D Hybrid Meshes , 2011 .
[6] Christopher J. Roy,et al. Verification of a Compressible CFD Code Using the Method of Manufactured Solutions , 2002 .
[7] Esteban Ferrer. A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes for simulating cross-flow turbines , 2012 .
[8] Eusebio Valero,et al. Comparison of Mesh Adaptation Using the Adjoint Methodology and Truncation Error Estimates , 2012 .
[9] B. Williams. Development and Evaluation of an à Posteriori Method for Estimating and Correcting GridInduced Errors in Solutions of the NavierStokes Equations , 2009 .
[10] J. C. Newman,et al. Adjoint-based error estimation and grid adaptation for functional outputs: Application to two-dimensional, inviscid, incompressible flows , 2009 .
[11] J. V. D. Vegt,et al. Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .
[12] Esteban Ferrer,et al. A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations , 2011 .
[13] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[14] David L. Darmofal,et al. An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations , 2007 .
[15] Eusebio Valero,et al. The estimation of truncation error by τ-estimation revisited , 2012, J. Comput. Phys..
[16] Gonzalo Rubio,et al. Quasi-a priori truncation error estimation and higher order extrapolation for non-linear partial differential equations , 2013, J. Comput. Phys..
[17] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[18] Marsha Berger. Adaptive Finite Difference Methods in Fluid Dynamics , 2011 .
[19] Klaus Bernert,et al. τ-Extrapolation - Theoretical Foundation, Numerical Experiment, and Application to Navier-Stokes Equations , 1997, SIAM J. Sci. Comput..
[20] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[21] S. Sherwin,et al. Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations , 2005 .
[22] Spencer J. Sherwin,et al. Stability of Projection Methods for Incompressible Flows Using High Order Pressure-Velocity Pairs of Same Degree: Continuous and Discontinuous Galerkin Formulations , 2014 .
[23] David A. Kopriva,et al. Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .
[24] Gonzalo Rubio,et al. Quasi-a priori mesh adaptation and extrapolation to higher order using τ-estimation , 2014 .
[25] Tyrone S. Phillips. Residual-based Discretization Error Estimation for Computational Fluid Dynamics , 2014 .
[26] Catherine Mavriplis,et al. Adaptive mesh strategies for the spectral element method , 1992 .
[27] Christopher J. Roy,et al. Adjoint and Truncation Error Based Adaptation for Finite Volume Schemes with Error Estimates , 2015 .
[28] Ewald Krämer,et al. A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows , 2008 .
[29] Esteban Ferrer,et al. A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes , 2012, J. Comput. Phys..
[30] Andrea Crivellini,et al. An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..
[31] C. Ross Ethier,et al. A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..
[32] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[33] Ralf Hartmann,et al. Error estimation and adjoint-based adaptation in aerodynamics , 2006 .
[34] Christopher J. Roy,et al. Residual Methods for Discretization Error Estimation , 2011 .
[35] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[36] Gonzalo Rubio,et al. The Estimation of Truncation Error by $$\tau $$-Estimation for Chebyshev Spectral Collocation Method , 2013, J. Sci. Comput..
[37] Mark Ainsworth,et al. A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..
[38] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[39] Guido Kanschat,et al. An Equal-Order DG Method for the Incompressible Navier-Stokes Equations , 2009, J. Sci. Comput..
[40] Richard P. Dwight,et al. Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation , 2008, J. Comput. Phys..
[41] Per-Olof Persson,et al. RANS Solutions Using High Order Discontinuous Galerkin Methods , 2007 .
[42] Gonzalo Rubio,et al. Quasi-A Priori Truncation Error Estimation in the DGSEM , 2015, J. Sci. Comput..
[43] Christopher J. Roy,et al. Review of Discretization Error Estimators in Scientific Computing , 2010 .
[44] John G. Bartzis,et al. Numerical experiments on the efficiency of local grid refinement based on truncation error estimates , 2012, J. Comput. Phys..