High affinity fucose binding of Pseudomonas aeruginosa lectin PA‐IIL: 1.0 Å resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches

PA‐IIL is a fucose‐binding lectin from Pseudomonas aeruginosa that is closely related to the virulence factors of the bacterium. Previous structural studies have revealed a new carbohydrate‐binding mode with direct involvement of two calcium ions (Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Peréz S, Wu AM, Gilboa‐Garber N, Imberty A. Structural basis for selective recognition of oligosaccharides from cystic fibrosis patients by the lectin PA‐IIL of Pseudomonas aeruginosa. Nat Struct Biol 2002;9:918–921). A combination of thermodynamic, structural, and computational methods has been used to study the basis of the high affinity for the monosaccharide ligand. A titration microcalorimetry study indicated that the high affinity is enthalpy driven. The crystal structure of the tetrameric PA‐IIL in complex with fucose and calcium was refined to 1.0 Å resolution and, in combination with modeling, allowed a proposal to be made for the hydrogen‐bond network in the binding site. Calculations of partial charges using ab initio computational chemistry methods indicated that extensive delocalization of charges between the calcium ions, the side chains of the protein‐binding site and the carbohydrate ligand is responsible for the high enthalpy of binding and therefore for the unusually high affinity observed for this unique mode of carbohydrate recognition. Proteins 2005. © 2004 Wiley‐Liss, Inc.

[1]  J. Weissenbach,et al.  Genome sequence of the plant pathogen Ralstonia solanacearum , 2002, Nature.

[2]  S. Degroote,et al.  Pseudomonas aeruginosa binds to neoglycoconjugates bearing mucin carbohydrate determinants and predominantly to sialyl-Lewis x conjugates. , 1999, Glycobiology.

[3]  A. Imberty,et al.  Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. , 2004, Microbes and infection.

[4]  Serge Pérez,et al.  Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients , 2002, Nature Structural Biology.

[5]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[6]  N. Gilboa-Garber Pseudomonas aeruginosa lectins. , 1982, Methods in enzymology.

[7]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[8]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[9]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[10]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[11]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[12]  N Durán,et al.  Chromobacterium violaceum: A Review of Pharmacological and Industiral Perspectives , 2001, Critical reviews in microbiology.

[13]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[14]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[15]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[16]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[17]  J. Koča,et al.  TRITON: graphic software for rational engineering of enzymes. , 2001, Trends in biochemical sciences.

[18]  L. Delbaere,et al.  Involvement of water in host-guest interactions. , 2007, Ciba Foundation symposium.

[19]  D. Katcoff,et al.  Identification and characterization of pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. , 2000, FEMS immunology and medical microbiology.

[20]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[21]  A. Surolia,et al.  Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. , 1993, The Journal of biological chemistry.

[22]  A. Surolia,et al.  Thermodynamics of Monosaccharide and Disaccharide Binding to Erythrina corallodendron Lectin* , 1996, The Journal of Biological Chemistry.

[23]  L. Wyns,et al.  Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. , 2003, Journal of molecular biology.

[24]  G. Davies,et al.  Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. , 2003, Acta crystallographica. Section D, Biological crystallography.

[25]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[26]  S. Wood,et al.  The structures of crystalline complexes of human serum amyloid P component with its carbohydrate ligand, the cyclic pyruvate acetal of galactose. , 2002, Journal of molecular biology.

[27]  K D Cowtan,et al.  Density modification for macromolecular phase improvement. , 1999, Progress in biophysics and molecular biology.

[28]  A. Imberty,et al.  A new Ralstonia solanacearum high‐affinity mannose‐binding lectin RS‐IIL structurally resembling the Pseudomonas aeruginosa fucose‐specific lectin PA‐IIL , 2004, Molecular microbiology.

[29]  T. Dam,et al.  Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. , 2002, Chemical reviews.

[30]  Ana Tereza Ribeiro de Vasconcelos,et al.  The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[32]  G. Lamblin,et al.  The glycosylation of airway mucins in cystic fibrosis and its relationship with lung infection by Pseudomonas aeruginosa. , 2003, Advances in experimental medicine and biology.

[33]  Robert M. Sweet,et al.  Macromolecular Crystallography: Part A , 1997 .

[34]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[35]  K Drickamer Ca(2+)-dependent sugar recognition by animal lectins. , 1996, Biochemical Society transactions.

[36]  B. Shaanan,et al.  Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. , 1998, Journal of molecular biology.

[37]  J. Sacchettini,et al.  Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. , 2001, Biochemistry.

[38]  Adam Baldwin,et al.  Burkholderia cepacia complex infection in patients with cystic fibrosis. , 2002, Journal of medical microbiology.

[39]  N. Vyas Atomic features of protein-carbohydrate interactions , 1991 .

[40]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[41]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[42]  J. Lo-Guidice,et al.  Human airway mucin glycosylation: A combinatory of carbohydrate determinants which vary in cystic fibrosis , 2001, Glycoconjugate Journal.

[43]  D. Katcoff,et al.  Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. , 1992, The Journal of biological chemistry.

[44]  N. Garber,et al.  The intracellular localization of Pseudomonas aeruginosa lectins. , 1983, Journal of general microbiology.

[45]  A. Imberty,et al.  Building sugars: The sweet part of structural biology , 1999 .

[46]  J F Brandts,et al.  Rapid measurement of binding constants and heats of binding using a new titration calorimeter. , 1989, Analytical biochemistry.

[47]  David W. Deerfield,et al.  Peter Rice Software Development GeneDoc Analysis and Visualization of Genetic Variation , 1997 .

[48]  K. Nicholas,et al.  GeneDoc: Analysis and visualization of genetic variation , 1997 .

[49]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[50]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..