Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

A systematic analysis of anomalous diffraction data obtained by serial femtosecond crystallography at an X-ray free-electron laser is presented and sulfur SAD phasing of SFX data from thaumatin microcrystals is demonstrated.

[1]  Julia Brasch,et al.  Structures from Anomalous Diffraction of Native Biological Macromolecules , 2012, Science.

[2]  Daniel Beisel,et al.  An anti-settling sample delivery instrument for serial femtosecond crystallography , 2012 .

[3]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[4]  Garth J. Williams,et al.  Serial Femtosecond Crystallography of G Protein–Coupled Receptors , 2013, Science.

[5]  A. McCoy,et al.  Macromolecular X-ray structure determination using weak single-wavelength anomalous data , 2014, Nature Methods.

[6]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[7]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[8]  Changyong Song,et al.  An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography , 2015, Scientific Reports.

[9]  Sébastien Boutet,et al.  Structure of the Angiotensin Receptor Revealed by Serial Femtosecond Crystallography , 2015, Cell.

[10]  W. Kabsch Processing of X-ray snapshots from crystals in random orientations , 2014, Acta crystallographica. Section D, Biological crystallography.

[11]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Kunio Hirata,et al.  Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL , 2014, Nature Methods.

[14]  J. Rose,et al.  Native SAD is maturing , 2015, IUCrJ.

[15]  W. Hendrickson,et al.  Multi-crystal native SAD analysis at 6 keV. , 2014, Acta crystallographica. Section D, Biological crystallography.

[16]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[17]  I. Tanaka,et al.  Comparison of phasing methods for sulfur-SAD using in-house chromium radiation: case studies for standard proteins and a 69 kDa protein. , 2005, Acta crystallographica. Section D, Biological crystallography.

[18]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[19]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[20]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[21]  T. Poulos,et al.  Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer , 2016, Proceedings of the National Academy of Sciences.

[22]  C. Schulze-Briese,et al.  PRIGo: a new multi-axis goniometer for macromolecular crystallography , 2015, Journal of synchrotron radiation.

[23]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[24]  Sébastien Boutet,et al.  Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam , 2014, Proceedings of the National Academy of Sciences.

[25]  Anton Barty,et al.  CASS - CFEL-ASG software suite , 2012, Comput. Phys. Commun..

[26]  W. Hendrickson,et al.  Crystallographic phasing from weak anomalous signals. , 2015, Current opinion in structural biology.

[27]  Manfred S Weiss,et al.  On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength. , 2005, Acta crystallographica. Section D, Biological crystallography.

[28]  Nicholas K Sauter,et al.  Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals , 2015, eLife.

[29]  Nicholas K. Sauter,et al.  A revised partiality model and post-refinement algorithm for X-ray free-electron laser data , 2015, Acta crystallographica. Section D, Biological crystallography.

[30]  Anton Barty,et al.  Accurate determination of segmented X-ray detector geometry. , 2015, Optics express.

[31]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[32]  Takashi Kameshima,et al.  Native sulfur/chlorine SAD phasing for serial femtosecond crystallography , 2015, Acta crystallographica. Section D, Biological crystallography.

[33]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[34]  G Bricogne,et al.  Can anomalous signal of sulfur become a tool for solving protein crystal structures? , 1999, Journal of molecular biology.

[35]  Nicholas K. Sauter,et al.  New Python-based methods for data processing , 2013, Acta crystallographica. Section D, Biological crystallography.

[36]  Sébastien Boutet,et al.  Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers , 2014, Nature Methods.

[37]  P. Krejcik,et al.  Few-femtosecond time-resolved measurements of X-ray free-electron lasers , 2014, Nature Communications.

[38]  F. Maia The Coherent X-ray Imaging Data Bank , 2012, Nature Methods.

[39]  Wayne A. Hendrickson,et al.  Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur , 1981, Nature.

[40]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[41]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[42]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[43]  D. Stuart,et al.  Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data , 2015, Nature Communications.

[44]  Sébastien Boutet,et al.  The CSPAD megapixel x-ray camera at LCLS , 2012, Other Conferences.

[45]  U Weierstall,et al.  Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.

[46]  Sébastien Boutet,et al.  The Coherent X-ray Imaging instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[47]  Janet L. Smith,et al.  Use of massively multiple merged data for low-resolution S-SAD phasing and refinement of flavivirus NS1. , 2014, Acta crystallographica. Section D, Biological crystallography.

[48]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[49]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[50]  Anton Barty,et al.  Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[51]  H. Chapman,et al.  Femtosecond protein nanocrystallography-data analysis methods. , 2010, Optics express.

[52]  Ezequiel Panepucci,et al.  Fast native-SAD phasing for routine macromolecular structure determination , 2014, Nature Methods.