OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments

Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close to decameter-high cliffs, or isolated without structural relation to the surrounding terrain. They can be up to ten times brighter than the average surface of the comet at visible wavelengths and display a significantly bluer spectrum. They do not exhibit significant changes over a period of a few weeks. All these observations are consistent with exposure of water ice at the surface of boulders produced by dislocation of the weakly consolidated layers that cover large areas of the nucleus. Laboratory experiments show that under simulated comet surface conditions, analog samples acquire a vertical stratification with an uppermost porous mantle of refractory dust overlaying a layer of hard ice formed by recondensation or sintering under the insulating dust mantle. The evolution of the visible spectrophotometric properties of samples during sublimation is consistent with the contrasts of brightness and color seen at the surface of the nucleus. Clustered bright spots are formed by the collapse of overhangs that is triggered by mass wasting of deeper layers. Isolated spots might be the result of the emission of boulders at low velocity that are redepositioned in other regions.

Giampiero Naletto | Mariolino De Cecco | Olivier Poch | Stefano Debei | Cesare Barbieri | Stubbe F. Hviid | Hans Rickman | Vania Da Deppo | Harald Michalik | Ekkehard Kührt | Stefano Mottola | Frank Preusker | Antoine Pommerol | Nilda Oklay | Ivano Bertini | Philippe Lamy | Laurent Jorda | Michael F. A'Hearn | Gabriele Cremonese | Wing-Huen Ip | Detlef Koschny | Francesco Marzari | Jean-Loup Bertaux | M. A. Barucci | Frank Scholten | Olivier Groussin | Jessica Agarwal | Maurizio Pajola | Sonia Fornasier | Jörg Knollenberg | S. Debei | F. Scholten | H. Keller | W. Ip | F. Marzari | S. Hviid | G. Naletto | G. Cremonese | V. Deppo | D. Koschny | L. Lara | I. Bertini | F. Preusker | C. Barbieri | A. Pommerol | M. Küppers | J. Vincent | S. Mottola | L. Jorda | H. Sierks | C. Tubiana | P. Lamy | H. Rickman | R. Rodrigo | S. Lowry | J. Agarwal | E. Kührt | J. Knollenberg | M. Barucci | M. A’Hearn | O. Groussin | C. Güttler | O. Poch | M. Pajola | S. Fornasier | J. Bertaux | M. Fulle | B. Davidsson | P. Gutiérrez | A. Auger | J. Kramm | M. Lazzarin | H. Michalik | N. Oklay | M. El-Maarry | J. L. Moreno | M. Cecco | N. Thomas | S. Boudreault | R. Marschall | C. Feller | A. Gracia-Berná | F. L. Forgia | B. Jost | Monica Lazzarin | Luisa M. Lara | Rafael Rodrigo | Stephen C. Lowry | Holger Sierks | Marco Fulle | Pedro J. Gutiérrez | Horst Uwe Keller | Michael Küppers | Carsten Güttler | Cecilia Tubiana | Jean-Baptiste Vincent | F. La Forgia | J.-R. Kramm | Nicholas Thomas | Géza Kovács | Björn Davidsson | Bernhard Jost | Steve Boudreault | Clement Feller | Mohamed Ramy El-Maarry | A. T. Auger | A. Gracia-Berná | Raphael Marschall | José L. Moreno | G. Kovacs

[1]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Scientific assessment of the quality of OSIRIS images , 2015 .

[2]  Angioletta Coradini,et al.  VIRTIS: The imaging spectrometer of the Rosetta mission , 1999 .

[3]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[4]  N. Thomas,et al.  Photometry and bulk physical properties of Solar System surfaces icy analogs: The Planetary Ice Laboratory at University of Bern , 2011 .

[5]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[6]  Peter H. Smith,et al.  Experimental and theoretical simulation of sublimating dusty water ice with implications for D/H ratios of water ice on Comets and Mars , 2012 .

[7]  S. Debei,et al.  Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko , 2015 .

[8]  M. A. Barucci,et al.  Space missions to small bodies: asteroids and cometary nuclei , 2011 .

[9]  Lynn Seaman,et al.  Dynamic failure in solids , 1977 .

[10]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[11]  K. Seiferlin,et al.  Thermal properties of cometary ices and sublimation residua including organics , 1996 .

[12]  S. Debei,et al.  Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015 .

[13]  Robert H. Brown,et al.  Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects , 2012 .

[14]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[15]  S. Debei,et al.  Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft , 2015, 1505.06888.

[16]  Tilman Spohn,et al.  Cometary ice texture and the thermal evolution of comets , 1995 .

[17]  K. Kossacki,et al.  Temperature dependence of the sublimation rate of water ice: Influence of impurities , 2014 .

[18]  Karen J. Meech,et al.  Deep Impact photometry of Comet 9p/Tempel 1 , 2007 .

[19]  S. Debei,et al.  Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015, 1509.02707.

[20]  J. Klačka Mass distribution in the asteroid belt , 1992 .

[21]  M. Knudsen,et al.  Die Molekularströmung der Gase durch Offnungen und die Effusion , 1909 .

[22]  S. Debei,et al.  REDISTRIBUTION OF PARTICLES ACROSS THE NUCLEUS OF COMET 67P/CHURYUMOV-GERASIMENKO , 2015 .

[23]  K. P. Klaasen,et al.  Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1 , 2006, Science.

[24]  J. Blum,et al.  Outgassing of icy bodies in the Solar System – I. The sublimation of hexagonal water ice through dust layers , 2011, 1101.2518.

[25]  W. Markiewicz,et al.  Sublimation coefficient of water ice under simulated cometary-like conditions , 1999 .

[26]  E. Quirico,et al.  Chemical characterization of Titan's tholins: solubility, morphology and molecular structure revisited. , 2009, The journal of physical chemistry. A.

[27]  Karen J. Meech,et al.  Photometric properties of the nucleus of Comet 103P/Hartley 2 , 2013 .

[28]  W. Beckmann,et al.  Interface kinetics of the growth and evaporation of ice single crystals from the vapour phase: II. Measurements in a pure water vapour environment , 1982 .

[29]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Regional surface morphology of comet 67 P / Churyumov-Gerasimenko from Rosetta / OSIRIS images ? , 2015 .

[30]  S. Debei,et al.  Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko , 2015 .

[31]  P. Lamy,et al.  The sizes, shapes, albedos, and colors of cometary nuclei , 2004 .

[32]  G. Kargl,et al.  Laboratory Investigation of the Evolution of Cometary Analogs: Results and Interpretation , 1997 .

[33]  H. Keller,et al.  KOSI. [Comet simulation] , 1991 .