High-speed continuous-variable quantum key distribution without sending a local oscillator.

We report a 100-MHz continuous-variable quantum key distribution (CV-QKD) experiment over a 25-km fiber channel without sending a local oscillator (LO). We use a "locally" generated LO and implement with a 1-GHz shot-noise-limited homodyne detector to achieve high-speed quantum measurement, and we propose a secure phase compensation scheme to maintain a low level of excess noise. These make high-bit-rate CV-QKD significantly simpler for larger transmission distances compared with previous schemes in which both LO and quantum signals are transmitted through the insecure quantum channel.

[1]  P. Grangier,et al.  Finite-size analysis of a continuous-variable quantum key distribution , 2010, 1005.0339.

[2]  G. Guo,et al.  Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack , 2013, 1302.0090.

[3]  Guihua Zeng,et al.  High performance reconciliation for continuous-variable quantum key distribution with LDPC code , 2015 .

[4]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[5]  Mu-Sheng Jiang,et al.  Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol , 2013 .

[6]  Huang Duan,et al.  A 300-MHz Bandwidth Balanced Homodyne Detector for Continuous Variable Quantum Key Distribution , 2013 .

[7]  E. Diamanti,et al.  Field test of a continuous-variable quantum key distribution prototype , 2008, 0812.3292.

[8]  L. Liang,et al.  Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems , 2013, 1303.6043.

[9]  Anthony Leverrier,et al.  Composable security proof for continuous-variable quantum key distribution with coherent States. , 2014, Physical review letters.

[10]  Hao Qin,et al.  Polarization attack on continuous-variable quantum key distribution system , 2013, Security + Defence.

[11]  H. Lo,et al.  Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers , 2007, 0709.3666.

[12]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[13]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[14]  M. Lours,et al.  High-resolution microwave frequency dissemination on an 86-km urban optical link , 2009, 0907.3500.

[15]  E. Diamanti,et al.  Preventing Calibration Attacks on the Local Oscillator in Continuous-Variable Quantum Key Distribution , 2013, 1304.7024.

[16]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[17]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[18]  Peng Huang,et al.  Security of Continuous-Variable Quantum Key Distribution with Imperfect Phase Compensation , 2015, International Journal of Theoretical Physics.

[19]  Peng Huang,et al.  Continuous-variable quantum key distribution with 1 Mbps secure key rate. , 2015, Optics express.

[20]  H. Lo,et al.  A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution , 2010, 1006.1257.

[21]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[22]  William Shieh,et al.  Beyond amplitude-only detection for digital coherent system using directly modulated laser. , 2015, Optics letters.

[23]  Weisheng Hu,et al.  Distribution of high-stability 100.04  GHz millimeter wave signal over 60  km optical fiber with fast phase-error-correcting capability. , 2014, Optics letters.

[24]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.