Modeling of Lithium Ion Batteries Employing Grand Canonical Monte Carlo and Multiscale Simulation

[1]  Leroy L. Chang,et al.  Cyclotron resonance in an InAs-GaSb superlattice , 1979 .

[2]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[3]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[4]  L. Faulkner,et al.  A microscopic model for diffusion of electrons by successive hopping among redox centers in networks , 1989 .

[5]  Ralph E. White,et al.  A Thermal Analysis of a Spirally Wound Battery Using a Simple Mathematical Model , 1989 .

[6]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[7]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[8]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[9]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[10]  J. Newman,et al.  Monte Carlo Simulation of the Open-Circuit Potential and the Entropy of Reaction in Lithium Manganese Oxide , 2002 .

[11]  Juan Bisquert,et al.  Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes , 2002 .

[12]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[13]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[14]  Marc Doyle,et al.  Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases , 1995 .

[15]  P. Ngoepe,et al.  Structural and electronic properties of lithium intercalated graphite LiC 6 , 2003 .

[16]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[17]  Venkat R. Subramanian,et al.  Series Solutions for Boundary Value Problems using a Symbolic Successive Substitution Method , 1999 .

[18]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[19]  Kevin Leung,et al.  Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. , 2010, Physical chemistry chemical physics : PCCP.

[20]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[21]  S. Nordholm,et al.  Corrected Debye−Hückel Theory of Salt Solutions: Size Asymmetry and Effective Diameters , 2002 .

[22]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[23]  Shinichiro Nakamura,et al.  Decomposition of LiPF6and Stability of PF 5 in Li-Ion Battery Electrolytes Density Functional Theory and Molecular Dynamics Studies , 2003 .

[24]  Johnsee Lee,et al.  Three‐Dimensional Thermal Modeling of Electric Vehicle Batteries , 1985 .

[25]  Ralph E. White,et al.  Modeling Lithium Intercalation of a Single Spinel Particle under Potentiodynamic Control , 2000 .

[26]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[27]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[28]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[29]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[30]  Anton Van der Ven,et al.  Lithium Diffusion in Layered Li x CoO2 , 1999 .

[31]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[32]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[33]  R. Braatz,et al.  Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation , 2011 .

[34]  Stephen H. Garofalini,et al.  Molecular dynamics simulation of lithium diffusion in Li2O–Al2O3–SiO2 glasses , 2004 .

[35]  Dominique Guyomard,et al.  The carbon/Li1+xMn2O4 system , 1994 .

[36]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[37]  John Newman,et al.  Temperature Rise in a Battery Module with Constant Heat Generation , 1995 .

[38]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[39]  Li,et al.  Crystal structure of LixNi2-xO2 and a lattice-gas model for the order-disorder transition. , 1992, Physical review. B, Condensed matter.

[40]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[41]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[42]  Anilesh Kumar A Modified Born Equation for Solvation Energy of Ions , 1992 .

[43]  Anton Van der Ven,et al.  Thermodynamics of spinel LixTiO2 from first principles , 2005 .

[44]  S. Pyun,et al.  Thermodynamic and kinetic approaches to lithium intercalation into a Li1−δMn2O4 electrode using Monte Carlo simulation , 2001 .

[45]  V. Subramanian,et al.  Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy , 2008 .

[46]  G. Pistoia,et al.  Lithium batteries : new materials, developments, and perspectives , 1994 .

[47]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[48]  M. Doyle,et al.  Relaxation Phenomena in Lithium‐Ion‐Insertion Cells , 1994 .

[49]  Anton Van der Ven,et al.  Nondilute diffusion from first principles: Li diffusion in Li x TiS 2 , 2008 .

[50]  Stephen H. Garofalini,et al.  Molecular dynamics simulations of Li transport between cathode crystals , 2002 .

[51]  Anton Van der Ven,et al.  Phase stability and nondilute Li diffusion in spinel Li 1 + x Ti 2 O 4 , 2010 .

[52]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[53]  Kinetics and thermodynamics of the lithium insertion reaction in spinel phase LixMn2O4 , 1995 .

[54]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[55]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[56]  V. Subramanian,et al.  Efficient Macro-Micro Scale Coupled Modeling of Batteries , 2005 .

[57]  J. Selman,et al.  Thermal modeling and design considerations of lithium-ion batteries , 1999 .

[58]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[59]  Robert M. Darling,et al.  Dynamic Monte Carlo Simulations of Diffusion in Li[sub y]Mn[sub 2]O[sub 4] , 1999 .

[60]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[61]  P. Balbuena,et al.  Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. , 2001, Journal of the American Chemical Society.

[62]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[63]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[64]  Dahn,et al.  Changes in the voltage profile of Li/Li1+xMn2-xO4 cells as a function of x. , 1996, Physical review. B, Condensed matter.

[65]  M. Verbrugge Three‐dimensionai temperature and current distribution in a battery module , 1995 .

[66]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[67]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[68]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[69]  James W. Evans,et al.  Electrochemical‐Thermal Model of Lithium Polymer Batteries , 2000 .

[70]  Rachel E. Gerver,et al.  3D thermal-electrochemical lithium-ion battery computational modeling , 2009 .

[71]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[72]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[73]  M. Armand,et al.  Building better batteries , 2008, Nature.