Wiener filtering with a seismic underground array at the Sanford Underground Research Facility

A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source for these detectors would be Newtonian noise, which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the Newtonian noise to below the projected noise floor for future gravitational-wave detectors. In this paper, we use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05 -- 1\,Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. We show how this subtraction would benefit proposed future low-frequency gravitational wave detectors. The variation in the Wiener filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise, which gives hope for future gravitational-wave detectors to address Newtonian noise.

[1]  Keita Kawabe,et al.  Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise , 2013, 1311.6835.

[2]  T. Creighton Tumbleweeds and airborne gravitational noise sources for LIGO , 2000, gr-qc/0007050.

[3]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[4]  Peter R. Saulson,et al.  Terrestrial gravitational noise on a gravitational wave antenna , 1984 .

[5]  Oxford,et al.  Inferring core-collapse supernova physics with gravitational waves , 2012, 1202.3256.

[6]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[7]  Caltech,et al.  GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE , 2012, 1210.6674.

[8]  R. Adhikari,et al.  Subtraction of Newtonian noise using optimized sensor arrays , 2012, 1207.0275.

[9]  Cutler,et al.  Gravitational helioseismology? , 1996, Physical review. D, Particles and fields.

[10]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  M. Coughlin,et al.  Seismic topographic scattering in the context of GW detector site selection , 2011, 1111.6319.

[13]  Seismic gravity-gradient noise in interferometric gravitational-wave detectors , 1998, gr-qc/9806018.

[14]  Nelson Christensen,et al.  LIGO S6 detector characterization studies , 2010 .

[15]  J. K. Blackburn,et al.  Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run , 2014, 1404.2199.

[16]  Paulo Sergio Ramirez,et al.  Fundamentals of Adaptive Filtering , 2002 .

[17]  M. G. Beker,et al.  Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise , 2011 .

[18]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[19]  C. S. Unnikrishnan,et al.  IndIGO and LIGO-India: Scope and Plans for Gravitational Wave Research and Precision Metrology in India , 2015, 1510.06059.

[20]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[21]  A. Antillón,et al.  ECC in proton-H collisions at keV projectile energy , 2012 .

[22]  Jaret Heise,et al.  Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota , 2010, 1006.0678.

[23]  R. Adhikari,et al.  Active noise cancellation in a suspended interferometer. , 2011, The Review of scientific instruments.

[24]  Frederik Tilmann,et al.  Application of multichannel Wiener filters to the suppression of ambient seismic noise in passive seismic arrays , 2008 .

[25]  A. Marturano,et al.  OPEN FILE REPORT , 1999 .

[26]  C. Kim,et al.  A high precision, compact electromechanical ground rotation sensor. , 2014, The Review of scientific instruments.

[27]  Vincent Loriette,et al.  Status of the Virgo project , 2011 .

[28]  M. Ando,et al.  Search for a stochastic gravitational-wave background using a pair of torsion-bar antennas , 2013, 1311.4273.

[29]  R. Abbott,et al.  Feedforward reduction of the microseism disturbance in a long-baseline interferometric gravitational-wave detector , 2002 .

[30]  M. Ando,et al.  Torsion-bar antenna for low-frequency gravitational-wave observations. , 2010, Physical review letters.

[31]  Dani Atkinson,et al.  Global Feed-Forward Vibration Isolation in a km scale Interferometer , 2012 .

[32]  Jeremy Faludi,et al.  Seismic isolation enhancements for initial and advanced LIGO , 2004 .

[33]  Holger Muller,et al.  Low-frequency terrestrial gravitational-wave detectors , 2013, 1308.2074.

[34]  W. Marsden I and J , 2012 .

[35]  Benno Willke,et al.  The upgrade of GEO 600 , 2010, 1004.0339.

[36]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[37]  K. Kokeyama,et al.  Residual amplitude modulation in interferometric gravitational wave detectors. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  G. Cella Off-Line Subtraction of Seismic Newtonian Noise , 2000 .

[39]  Christina Courtright,et al.  Context in information behavior research , 2007 .