SIGACT news complexity theory column 48

Here is a real gift to the field from David Johnson: After a thirteen year intermission, David is restarting his NP-completeness column. His column will now appear about twice yearly in ACM Transactions on Algorithms. Welcome back David, and thanks! And for those for whom a diet of two per year wont do, meals past can be found at http://www.research.att.com/~dsj/columns.html.

[1]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[2]  C. Schnorr Klassifikation der Zufallsgesetze nach Komplexität und Ordnung , 1970 .

[3]  Christopher Umans,et al.  Pseudorandomness for Approximate Counting and Sampling , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[4]  H. Fédérer Geometric Measure Theory , 1969 .

[5]  Jack H. Lutz,et al.  Category and Measure in Complexity Classes , 1990, SIAM J. Comput..

[6]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[7]  Jack H. Lutz,et al.  Finite-state dimension , 2001, Theor. Comput. Sci..

[8]  Jacobo Torán,et al.  On counting and approximation , 1989, Acta Informatica.

[9]  Jacobo Torán,et al.  On Counting and Approximation , 1988, CAAP.

[10]  Jack H. Lutz,et al.  Scaled dimension and nonuniform complexity , 2003, J. Comput. Syst. Sci..

[11]  Lance Fortnow,et al.  Prediction and dimension , 2005, J. Comput. Syst. Sci..

[12]  John M. Hitchcock,et al.  Scaled Dimension and the Kolmogorov Complexity of Turing-Hard Sets , 2007, Theory of Computing Systems.

[13]  Avi Wigderson,et al.  Randomness vs Time: Derandomization under a Uniform Assumption , 2001, J. Comput. Syst. Sci..

[14]  Sebastiaan Terwijn,et al.  Genericity and Measure for Exponential Time , 1994, Theor. Comput. Sci..

[15]  Claus-Peter Schnorr,et al.  A unified approach to the definition of random sequences , 1971, Mathematical systems theory.

[16]  John M. Hitchcock,et al.  Resource-bounded strong dimension versus resource-bounded category , 2005, Inf. Process. Lett..

[17]  C. Tricot Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  John M. Hitchcock MAX3SAT is exponentially hard to approximate if NP has positive dimension , 2002, Theor. Comput. Sci..

[19]  Johannes Köbler,et al.  On the resource bounded measure of P/poly , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[20]  Jack H. Lutz,et al.  Why Computational Complexity Requires Stricter Martingales , 2005, Theory of Computing Systems.

[21]  N. V. Vinodchandran,et al.  Partial Bi-immunity, Scaled Dimension, and NP-Completeness , 2007, Theory of Computing Systems.

[22]  Kenneth Falconer,et al.  GEOMETRY OF SETS AND MEASURES IN EUCLIDEAN SPACES FRACTALS AND RECTIFIABILITY , 1996 .

[23]  J. H. Lutz,et al.  Effective fractal dimension: foundations and applications , 2003 .

[24]  Eric Allender,et al.  When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Complexity , 2001, FSTTCS.

[25]  Elvira Mayordomo Contributions to the study of resource-bounded measure , 1994 .

[26]  Jack H. Lutz,et al.  Gales and the Constructive Dimension of Individual Sequences , 2000, ICALP.

[27]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[28]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[29]  Ludwig Staiger,et al.  A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.

[30]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[31]  John M. Hitchcock Fractal dimension and logarithmic loss unpredictability , 2003, Theor. Comput. Sci..

[32]  Elvira Mayordomo,et al.  Dimension Is Compression , 2005, MFCS.

[33]  Jack H. Lutz,et al.  The dimensions of individual strings and sequences , 2002, Inf. Comput..

[34]  Hawking,et al.  Chronology protection conjecture. , 1992, Physical review. D, Particles and fields.

[35]  Xiaoyang Gu A note on dimensions of polynomial size circuits , 2006, Theor. Comput. Sci..

[36]  John M. Hitchcock Small spans in scaled dimension , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[37]  Jack H. Lutz,et al.  Effective Strong Dimension in Algorithmic Information and Computational Complexity , 2004, STACS.

[38]  Philippe Moser Generic Density and Small Span Theorem , 2005, FCT.

[39]  G. A. Edgar Integral, probability, and fractal measures , 1997 .

[40]  Elvira Mayordomo,et al.  A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..

[41]  Jack H. Lutz,et al.  The Complexity and Distribution of Hard Problems , 1995, SIAM J. Comput..

[42]  Jack H. Lutz,et al.  Almost everywhere high nonuniform complexity , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[43]  C. Schnorr Zufälligkeit und Wahrscheinlichkeit , 1971 .

[44]  J. Doob Regularity properties of certain families of chance variables , 1940 .

[45]  Jack H. Lutz,et al.  Effective Strong Dimension, Algorithmic Information, and Computational Complexity , 2002, ArXiv.

[46]  Jack H. Lutz,et al.  Completeness and Weak Completeness Under Polynomial-Size Circuits , 1996, Inf. Comput..

[47]  N. V. Vinodchandran,et al.  Dimension, entropy rates, and compression , 2006, J. Comput. Syst. Sci..

[48]  Jack H. Lutz Resource-bounded measure , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[49]  Juris Hartmanis,et al.  On Hausdorff and Topological Dimensions of the Kolmogorov Complexity of the Real Line , 1994, J. Comput. Syst. Sci..

[50]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[51]  Frank Stephan,et al.  Hausdorff dimension in exponential time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[52]  Lance Fortnow,et al.  Infinitely-Often Autoreducible Sets , 2003, ISAAC.

[53]  K. Falconer Techniques in fractal geometry , 1997 .

[54]  Jack H. Lutz,et al.  Twelve Problems in Resource-Bounded Measure , 1999, Bull. EATCS.

[55]  Claus-Peter Schnorr,et al.  Process complexity and effective random tests , 1973 .

[56]  Christian Glaßer,et al.  Autoreducibility, mitoticity, and immunity , 2007, J. Comput. Syst. Sci..

[57]  Jack H. Lutz,et al.  Dimension in complexity classes , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[58]  Jack H. Lutz,et al.  Cook Versus Karp-Levin: Separating Completeness Notions if NP is not Small , 1996, Theor. Comput. Sci..

[59]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[60]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[61]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[62]  Russell Impagliazzo,et al.  A zero one law for RP , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[63]  Dieter van Melkebeek The zero-one law holds for BPP , 2000, Theor. Comput. Sci..

[64]  Boris Ryabko,et al.  The Complexity and Effectiveness of Prediction Algorithms , 1994, J. Complex..

[65]  Jack H. Lutz,et al.  The quantitative structure of exponential time , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[66]  D. Sullivan Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , 1984 .

[67]  Dieter van Melkebeek,et al.  Hard Sets Are Hard to Find , 1999, J. Comput. Syst. Sci..

[68]  John M. Hitchcock,et al.  Hausdorff dimension and oracle constructions , 2006, Theor. Comput. Sci..