SIGACT news complexity theory column 48
暂无分享,去创建一个
[1] F. Hausdorff. Dimension und äußeres Maß , 1918 .
[2] C. Schnorr. Klassifikation der Zufallsgesetze nach Komplexität und Ordnung , 1970 .
[3] Christopher Umans,et al. Pseudorandomness for Approximate Counting and Sampling , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).
[4] H. Fédérer. Geometric Measure Theory , 1969 .
[5] Jack H. Lutz,et al. Category and Measure in Complexity Classes , 1990, SIAM J. Comput..
[6] G. A. Edgar. Measure, Topology, and Fractal Geometry , 1990 .
[7] Jack H. Lutz,et al. Finite-state dimension , 2001, Theor. Comput. Sci..
[8] Jacobo Torán,et al. On counting and approximation , 1989, Acta Informatica.
[9] Jacobo Torán,et al. On Counting and Approximation , 1988, CAAP.
[10] Jack H. Lutz,et al. Scaled dimension and nonuniform complexity , 2003, J. Comput. Syst. Sci..
[11] Lance Fortnow,et al. Prediction and dimension , 2005, J. Comput. Syst. Sci..
[12] John M. Hitchcock,et al. Scaled Dimension and the Kolmogorov Complexity of Turing-Hard Sets , 2007, Theory of Computing Systems.
[13] Avi Wigderson,et al. Randomness vs Time: Derandomization under a Uniform Assumption , 2001, J. Comput. Syst. Sci..
[14] Sebastiaan Terwijn,et al. Genericity and Measure for Exponential Time , 1994, Theor. Comput. Sci..
[15] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[16] John M. Hitchcock,et al. Resource-bounded strong dimension versus resource-bounded category , 2005, Inf. Process. Lett..
[17] C. Tricot. Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] John M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension , 2002, Theor. Comput. Sci..
[19] Johannes Köbler,et al. On the resource bounded measure of P/poly , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).
[20] Jack H. Lutz,et al. Why Computational Complexity Requires Stricter Martingales , 2005, Theory of Computing Systems.
[21] N. V. Vinodchandran,et al. Partial Bi-immunity, Scaled Dimension, and NP-Completeness , 2007, Theory of Computing Systems.
[22] Kenneth Falconer,et al. GEOMETRY OF SETS AND MEASURES IN EUCLIDEAN SPACES FRACTALS AND RECTIFIABILITY , 1996 .
[23] J. H. Lutz,et al. Effective fractal dimension: foundations and applications , 2003 .
[24] Eric Allender,et al. When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Complexity , 2001, FSTTCS.
[25] Elvira Mayordomo. Contributions to the study of resource-bounded measure , 1994 .
[26] Jack H. Lutz,et al. Gales and the Constructive Dimension of Individual Sequences , 2000, ICALP.
[27] Jean-Luc Ville. Étude critique de la notion de collectif , 1939 .
[28] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[29] Ludwig Staiger,et al. A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.
[30] John Gill,et al. Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..
[31] John M. Hitchcock. Fractal dimension and logarithmic loss unpredictability , 2003, Theor. Comput. Sci..
[32] Elvira Mayordomo,et al. Dimension Is Compression , 2005, MFCS.
[33] Jack H. Lutz,et al. The dimensions of individual strings and sequences , 2002, Inf. Comput..
[34] Hawking,et al. Chronology protection conjecture. , 1992, Physical review. D, Particles and fields.
[35] Xiaoyang Gu. A note on dimensions of polynomial size circuits , 2006, Theor. Comput. Sci..
[36] John M. Hitchcock. Small spans in scaled dimension , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[37] Jack H. Lutz,et al. Effective Strong Dimension in Algorithmic Information and Computational Complexity , 2004, STACS.
[38] Philippe Moser. Generic Density and Small Span Theorem , 2005, FCT.
[39] G. A. Edgar. Integral, probability, and fractal measures , 1997 .
[40] Elvira Mayordomo,et al. A Kolmogorov complexity characterization of constructive Hausdorff dimension , 2002, Inf. Process. Lett..
[41] Jack H. Lutz,et al. The Complexity and Distribution of Hard Problems , 1995, SIAM J. Comput..
[42] Jack H. Lutz,et al. Almost everywhere high nonuniform complexity , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.
[43] C. Schnorr. Zufälligkeit und Wahrscheinlichkeit , 1971 .
[44] J. Doob. Regularity properties of certain families of chance variables , 1940 .
[45] Jack H. Lutz,et al. Effective Strong Dimension, Algorithmic Information, and Computational Complexity , 2002, ArXiv.
[46] Jack H. Lutz,et al. Completeness and Weak Completeness Under Polynomial-Size Circuits , 1996, Inf. Comput..
[47] N. V. Vinodchandran,et al. Dimension, entropy rates, and compression , 2006, J. Comput. Syst. Sci..
[48] Jack H. Lutz. Resource-bounded measure , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).
[49] Juris Hartmanis,et al. On Hausdorff and Topological Dimensions of the Kolmogorov Complexity of the Real Line , 1994, J. Comput. Syst. Sci..
[50] Claude E. Shannon,et al. The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..
[51] Frank Stephan,et al. Hausdorff dimension in exponential time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.
[52] Lance Fortnow,et al. Infinitely-Often Autoreducible Sets , 2003, ISAAC.
[53] K. Falconer. Techniques in fractal geometry , 1997 .
[54] Jack H. Lutz,et al. Twelve Problems in Resource-Bounded Measure , 1999, Bull. EATCS.
[55] Claus-Peter Schnorr,et al. Process complexity and effective random tests , 1973 .
[56] Christian Glaßer,et al. Autoreducibility, mitoticity, and immunity , 2007, J. Comput. Syst. Sci..
[57] Jack H. Lutz,et al. Dimension in complexity classes , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.
[58] Jack H. Lutz,et al. Cook Versus Karp-Levin: Separating Completeness Notions if NP is not Small , 1996, Theor. Comput. Sci..
[59] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[60] P. Levy. Théorie de l'addition des variables aléatoires , 1955 .
[61] Larry J. Stockmeyer,et al. On Approximation Algorithms for #P , 1985, SIAM J. Comput..
[62] Russell Impagliazzo,et al. A zero one law for RP , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..
[63] Dieter van Melkebeek. The zero-one law holds for BPP , 2000, Theor. Comput. Sci..
[64] Boris Ryabko,et al. The Complexity and Effectiveness of Prediction Algorithms , 1994, J. Complex..
[65] Jack H. Lutz,et al. The quantitative structure of exponential time , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[66] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , 1984 .
[67] Dieter van Melkebeek,et al. Hard Sets Are Hard to Find , 1999, J. Comput. Syst. Sci..
[68] John M. Hitchcock,et al. Hausdorff dimension and oracle constructions , 2006, Theor. Comput. Sci..