Uniqueness of Solutions to the Spectral Hierarchy in Kinetic Wave Turbulence Theory

In [32] and [20], Eyink and Shi and Chibbaro et al., respectively, formally derived an infinite, coupled hierarchy of equations for the spectral correlation functions of a system of weakly interacting nonlinear dispersive waves with random phases in the standard kinetic limit. Analogously to the relationship between the Boltzmann hierarchy and Boltzmann equation, this spectral hierarchy admits a special class of factorized solutions, where each factor is a solution to the wave kinetic equation (WKE). A question left open by these works and highly relevant for the mathematical derivation of the WKE is whether solutions of the spectral hierarchy are unique, in particular whether factorized initial data necessarily lead to factorized solutions. In this article, we affirmatively answer this question in the case of 4-wave interactions by showing, for the first time, that this spectral hierarchy is well-posed in an appropriate function space. Our proof draws on work of Chen and Pavlović [10] for the Gross-Pitaevskii hierarchy in quantum many-body theory and of Germain et al. [37] for the well-posedness of the WKE.

[1]  J. Lukkarinen,et al.  Weakly nonlinear Schrödinger equation with random initial data , 2009, 0901.3283.

[2]  J. Holmer,et al.  The Derivation of the Energy-critical NLS from Quantum Many-body Dynamics , 2018 .

[3]  J. Shatah,et al.  Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation , 2019, Inventiones mathematicae.

[4]  F. Golse,et al.  Towards a rigorous derivation of the cubic NLSE in dimension one , 2004 .

[5]  Zhihui Xie,et al.  Unconditional Uniqueness of the cubic Gross-Pitaevskii Hierarchy with Low Regularity , 2014, SIAM J. Math. Anal..

[6]  U. Eckern Relaxation processes in a condensed Bose gas , 1984 .

[7]  J. Holmer,et al.  Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation , 2013, 1308.3895.

[8]  Quasiparticle Kinetic Equation in a Trapped Bose Gas at Low Temperatures , 2000, cond-mat/0010107.

[9]  H. Spohn Boltzmann hierarchy and boltzmann equation , 1984 .

[10]  Alan C. Newell,et al.  Wave Turbulence , 2011 .

[11]  S. Herr,et al.  The Gross–Pitaevskii Hierarchy on General Rectangular Tori , 2014, 1410.5338.

[12]  Sergiu Klainerman,et al.  On the Uniqueness of Solutions to the Gross-Pitaevskii Hierarchy , 2007 .

[13]  R. Peierls Zur Theorie der galvanomagnetischen Effekte , 1929 .

[14]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I: Wave Turbulence , 1992 .

[15]  Horng-Tzer Yau,et al.  Derivation of the Gross‐Pitaevskii hierarchy for the dynamics of Bose‐Einstein condensate , 2004, math-ph/0410005.

[16]  A. Newell,et al.  Wave Turbulence: A Story Far from Over , 2013 .

[17]  Carlo Cercignani,et al.  Kinetic Theories and the Boltzmann Equation , 1984 .

[18]  R. Seiringer,et al.  Unconditional Uniqueness for the Cubic Gross‐Pitaevskii Hierarchy via Quantum de Finetti , 2013, 1307.3168.

[19]  Z. Ammari,et al.  On Well-Posedness for General Hierarchy Equations of Gross–Pitaevskii and Hartree Type , 2020, Archive for Rational Mechanics and Analysis.

[20]  M. Escobedo,et al.  On the Theory of Weak Turbulence for the Nonlinear Schr\"odinger Equation , 2013, 1305.5746.

[21]  Eric Falcon,et al.  Observation of gravity-capillary wave turbulence. , 2007, Physical review letters.

[22]  Horng-Tzer Yau,et al.  Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate , 2004, math-ph/0606017.

[23]  K. Hasselmann On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum , 1963, Journal of Fluid Mechanics.

[24]  Federica Pezzotti,et al.  Analytical approach to relaxation dynamics of condensed Bose gases , 2010, 1008.0714.

[25]  H. Yau,et al.  Rigorous Derivation of the Gross-Pitaevskii Equation with a Large Interaction Potential , 2008, 0802.3877.

[26]  Yu Deng,et al.  On the derivation of the wave kinetic equation for NLS , 2019, Forum of Mathematics, Pi.

[27]  G. Staffilani,et al.  Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics , 2008, 0808.0505.

[28]  E. Faou Linearized Wave Turbulence Convergence Results for Three-Wave Systems , 2018, Communications in Mathematical Physics.

[29]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[30]  M. Pulvirenti,et al.  On the validity of the Boltzmann equation for short range potentials , 2013, 1301.2514.

[31]  Thomas Chen,et al.  Derivation of the Cubic NLS and Gross–Pitaevskii Hierarchy from Manybody Dynamics in d = 3 Based on Spacetime Norms , 2011, 1111.6222.

[32]  V. Sohinger,et al.  A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on T3 from the dynamics of many-body quantum systems , 2014, 1405.3003.

[33]  Thomas Chen,et al.  On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies , 2008 .

[34]  J. Holmer,et al.  On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction , 2013, 1303.5385.

[35]  H. Spohn On the Boltzmann equation for weakly nonlinear wave equations , 2007, 0706.0855.

[36]  Minh-Binh Tran,et al.  On the wave turbulence theory for stochastic and random multidimensional KdV type equations , 2021 .

[37]  S. Chibbaro,et al.  Wave-turbulence theory of four-wave nonlinear interactions. , 2017, Physical review. E.

[38]  Iu. L. Klimontovich,et al.  The statistical theory of non-equilibrium processes in a plasma , 1967 .

[39]  Minh-Binh Tran,et al.  Optimal local well-posedness theory for the kinetic wave equation , 2017, Journal of Functional Analysis.

[40]  S. Chibbaro,et al.  4-wave dynamics in kinetic wave turbulence , 2016, 1611.08030.

[41]  K. Hasselmann On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irrevesibility , 1963, Journal of Fluid Mechanics.

[42]  R. Seiringer,et al.  On the Well-Posedness and Scattering for the Gross–Pitaevskii Hierarchy via Quantum de Finetti , 2013, 1311.2136.

[43]  David Pines,et al.  A Collective Description of Electron Interactions. I. Magnetic Interactions , 1951 .

[44]  F. Golse,et al.  Rigorous Derivation of the Cubic NLS in Dimension One , 2007 .

[45]  Younghun Hong,et al.  Uniqueness of solutions to the 3D quintic Gross-Pitaevskii Hierarchy , 2014, 1410.6961.

[46]  Vladimir E. Zakharov,et al.  Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid , 1999 .

[47]  J. Holmer,et al.  The Rigorous Derivation of the 2D Cubic Focusing NLS from Quantum Many-body Evolution , 2015, 1508.07675.

[48]  Carlo Cercignani,et al.  The Derivation of the Boltzmann Equation , 1997 .

[49]  J. Shatah,et al.  On the kinetic wave turbulence description for NLS , 2019 .

[50]  Thomas Chen,et al.  The quintic NLS as the mean field limit of a boson gas with three-body interactions , 2008, 0812.2740.

[51]  P. Germain,et al.  On the derivation of the homogeneous kinetic wave equation , 2019, 2203.13748.

[52]  P. McClintock,et al.  Wave turbulence in quantum fluids , 2014, Proceedings of the National Academy of Sciences.

[53]  Natasa Pavlovic,et al.  Rigorous Derivation of a Ternary Boltzmann Equation for a Classical System of Particles , 2019, Communications in Mathematical Physics.

[54]  G. Staffilani,et al.  A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation , 2019, Advances in Mathematics.

[55]  Philip T. Gressman,et al.  On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy , 2012, 1212.2987.

[56]  L. J. Savage,et al.  Symmetric measures on Cartesian products , 1955 .

[57]  R. Kronig A Collective Description of Electron Interactions , 1952 .

[58]  Thomas Chen,et al.  Derivation in Strong Topology and Global Well-Posedness of Solutions to the Gross-Pitaevskii Hierarchy , 2013, 1305.1404.

[59]  A. Kierkels,et al.  On Self-Similar Solutions to a Kinetic Equation Arising in Weak Turbulence Theory for the Nonlinear Schrödinger Equation , 2015, 1511.01292.

[60]  J. Lukkarinen,et al.  Not to Normal Order—Notes on the Kinetic Limit for Weakly Interacting Quantum Fluids , 2008, 0807.5072.

[61]  Horng-Tzer Yau,et al.  Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems , 2005, math-ph/0508010.

[62]  J. Velázquez,et al.  On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation , 2014, 1410.2073.

[63]  G. Eyink,et al.  Kinetic wave turbulence , 2012, 1201.4067.

[64]  A. Suzzoni Singularities in the weak turbulence regime for the quintic Schrödinger equation , 2020, 2010.14179.

[65]  Isabelle Gallagher,et al.  From Newton to Boltzmann: Hard Spheres and Short-range Potentials , 2012, 1208.5753.

[66]  Asymptotics of resolvent integrals: The suppression of crossings for analytic lattice dispersion relations , 2006, math-ph/0604049.

[67]  Victor Montagud-Camps Turbulence , 2019, Turbulent Heating and Anisotropy in the Solar Wind.

[68]  O. Lanford Time evolution of large classical systems , 1975 .

[69]  R. Illner,et al.  Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum , 1986 .

[70]  G. Staffilani,et al.  Randomization and the Gross–Pitaevskii Hierarchy , 2013, 1308.3714.