A Dual-Channel Compass/GPS/GLONASS/Galileo Reconfigurable GNSS Receiver in 65 nm CMOS With On-Chip I/Q Calibration

A fully integrated dual-channel reconfigurable GNSS receiver supporting Compass/GPS/GLONASS/Galileo systems is implemented in 65 nm CMOS. The receiver incorporates two independent channels to receive dual-frequency signals simultaneously. GNSS signals located at the 1.2 GHz or 1.6 GHz bands are supported, with their bandwidths programmable among 2.2 MHz, 4.2 MHz, 8 MHz, 10 MHz, and 18 MHz. By implementing a flexible frequency plan with a low/zero-IF architecture and reconfigurable analog baseband circuits, only one frequency synthesizer is required to provide the local oscillator (LO) frequency for two channels, thereby avoiding any LO crosstalk. Analog baseband circuits employ operational amplifiers that are capable of power scaling, in order to minimize power consumption across different operating modes. An I/Q mismatch calibration module placed prior to the complex-IF bandpass filter is implemented to improve the image rejection ratio. The receiver achieves a minimum 1.88 dB noise figure, an average 50 dB image rejection ratio, and a 64 dB dynamic range with 1 dB steps of gain-adjustment, with a total power consumption of 31-44 mW. Finally, experimental verification combining both the receiver and a digital baseband shows a positioning result comparable to commercial chips.

[1]  R. Berenguer,et al.  A low power low noise figure GPS/GALILEO front-end for handheld applications in a 0.35 /spl mu/m SiGe process , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[2]  Y. H. Lee,et al.  Non-Data-Aided Approach to I/Q Mismatch Compensation in Low-IF Receivers , 2007, IEEE Transactions on Signal Processing.

[3]  Yung-Yu Lin,et al.  A 1.2V 2MHz BW 0.084mm2 CT ΔΣ ADC with −97.7dBc THD and 80dB DR using low-latency DEM , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  Frank Amoroso Adaptive A/D Converter to Suppress CW Interference in DSPN Spread-Spectrum Communications , 1983, IEEE Trans. Commun..

[5]  Jun-Gi Jo,et al.  A L1-band dual-mode RF receiver for GPS and Galileo in 0.18μm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[6]  Bang-Sup Song,et al.  A Complex Image Rejection Circuit With Sign Detection Only , 2006, IEEE Journal of Solid-State Circuits.

[7]  Mark Miles Cloutier,et al.  A 4-dB NF GPS receiver front-end with AGC and 2-b A/D , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[8]  Minsu Jeong,et al.  A complex band-pass filter for low-IF conversion DAB/T-DMB tuner with I/Q mismatch calibration , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[9]  Michael S. Braasch,et al.  GPS receiver architectures and measurements , 1999, Proc. IEEE.

[10]  Roc Berenguer Pérez,et al.  GPS & Galileo: Dual RF Front-End Receiver and Design, Fabrication, and Test , 2008 .

[11]  I. Elahi,et al.  I/Q mismatch compensation using adaptive decorrelation in a low-IF receiver in 90-nm CMOS process , 2006, IEEE Journal of Solid-State Circuits.

[12]  Eric Chatre,et al.  Evolution of the Global Navigation SatelliteSystem (GNSS) , 2008, Proceedings of the IEEE.

[13]  Baoyong Chi,et al.  A dual-channel GPS/Compass/Galileo/GLONASS reconfigurable GNSS receiver in 65nm CMOS , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[14]  Santiago Celma,et al.  1.8 V-100 MHz CMOS programmable gain amplifier , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[15]  A. Vasilopoulos,et al.  A Low-Power Wideband Reconfigurable Integrated Active-RC Filter With 73 dB SFDR , 2006, IEEE Journal of Solid-State Circuits.

[16]  Pietro Andreani,et al.  Noise optimization of an inductively degenerated CMOS low noise amplifier , 2001 .

[17]  Jose Silva-Martinez,et al.  A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors , 2003, IEEE J. Solid State Circuits.

[18]  Kwyro Lee,et al.  A 19-mW 2.6-mm2 L1/L2 dual-band CMOS GPS receiver , 2005, IEEE J. Solid State Circuits.

[19]  S. Das,et al.  A 56-mW 23-mm/sup 2/ single-chip 180-nm CMOS GPS receiver with 27.2-mW 4.1-mm/sup 2/ radio , 2006, IEEE Journal of Solid-State Circuits.

[20]  Jun-Gi Jo,et al.  An $L1$ -Band Dual-Mode RF Receiver for GPS and Galileo in 0.18- $\mu {\hbox{m}}$ CMOS , 2009 .

[21]  T. Ruotsalainen,et al.  A 250-MHz BiCMOS receiver channel with leading edge timing discriminator for a pulsed time-of-flight laser rangefinder , 2005, IEEE Journal of Solid-State Circuits.

[22]  Kwyro Lee,et al.  A 19-mW 2.6-mm2 L1/L2 dual-band CMOS GPS receiver , 2005 .

[23]  Chao Lu,et al.  Reconfigurable dual-channel tri-mode all-band RF receiver for next generation GNSS , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[24]  Emanuela Falletti,et al.  Satellite Radiolocalization From GPS to GNSS and Beyond: Novel Technologies and Applications for Civil Mass Market , 2011, Proceedings of the IEEE.

[25]  Kuan-I Li,et al.  A GPS/Galileo SoC with adaptive in-band blocker cancellation in 65nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[26]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[27]  Zhihua Wang,et al.  Power-Scalable, Complex Bandpass/Low-Pass Filter With I/Q Imbalance Calibration for a Multimode GNSS Receiver , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[28]  T. Krishnaswamy,et al.  A 90nm CMOS single-chip GPS receiver with 5dBm out-of-band IIP3 2.0dB NF , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..