On the Computational Complexity of MCMC-Based Estimators in Large Samples

In this paper we examine the implications of the statistical large sample theory for the computational complexity of Bayesian and quasi-Bayesian estimation carried out using Metropolis random walks. Our analysis is motivated by the Laplace-Bernstein-Von Mises central limit theorem, which states that in large samples the posterior or quasi-posterior approaches a normal density. Using this observation, we establish polynomial bounds on the computational complexity of general Metropolis random walks methods in large samples. Our analysis covers cases, where the underlying log-likelihood or extremum criterion function is possibly nonconcave, discontinuous, and of increasing dimension. However, the central limit theorem restricts the deviations from continuity and log-concavity of the log-likelihood or extremum criterion function in a very specific manner.

[1]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[2]  P. Bickel,et al.  Some contributions to the asymptotic theory of Bayes solutions , 1969 .

[3]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[4]  B. Efron THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .

[5]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[6]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[7]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[8]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[9]  S. Portnoy Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity , 1988 .

[10]  Roger Koenker,et al.  Asymptotic Theory and Econometric Practice , 1988 .

[11]  Mark Jerrum,et al.  Conductance and the rapid mixing property for Markov chains: the approximation of permanent resolved , 1988, STOC '88.

[12]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[13]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[14]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[15]  George S. Fishman,et al.  Choosing sample path length and number of sample paths when starting in steady state , 1994, Oper. Res. Lett..

[16]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[17]  Ravi Kannan,et al.  Sampling according to the multivariate normal density , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[18]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.

[19]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[20]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[21]  Guido W. Imbens,et al.  One-step estimators for over-identified generalized method of moments models , 1997 .

[22]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[23]  O. Bunke,et al.  Asymptotic behavior of Bayes estimates under possibly incorrect models , 1998 .

[24]  László Lovász,et al.  Hit-and-run mixes fast , 1999, Math. Program..

[25]  R. Engle,et al.  CAViaR , 1999 .

[26]  R. Tweedie,et al.  Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations* , 1999 .

[27]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[28]  S. Ghosal Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity , 2000 .

[29]  Alison L. Gibbs,et al.  Convergence of Markov chain Monte Carlo algorithms with applications to image restoration , 2000 .

[30]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[31]  J. Geweke,et al.  Computationally Intensive Methods for Integration in Econometrics , 2001 .

[32]  Siddhartha Chib,et al.  MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION AND INFERENCE , 2001 .

[33]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[34]  V. Chernozhukov,et al.  An MCMC Approach to Classical Estimation , 2002, 2301.07782.

[35]  Xiaotong Shen Asymptotic Normality of Semiparametric and Nonparametric Posterior Distributions , 2002 .

[36]  S. Vempala,et al.  Hit-and-Run is Fast and Fun ∗ , 2002 .

[37]  S. Vempala Hit-and-Run is Fast and Fun 1 , 2003 .

[38]  Guido W. Imbens,et al.  Empirical likelihood estimation and consistent tests with conditional moment restrictions , 2003 .

[39]  Santosh S. Vempala,et al.  Hit-and-run from a corner , 2004, STOC '04.

[40]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[41]  Lu Tian,et al.  Implementation Of Estimating-Function Based Inference Procedures With MCMC Sampler , 2005 .

[42]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[43]  Y. Atchadé An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .

[44]  J. Geanakoplos,et al.  Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models , 2007 .

[45]  Santosh S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.

[46]  S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007 .

[47]  S. Vempala Geometric Random Walks: a Survey , 2007 .

[48]  Victor Chernozhukov,et al.  Posterior Inference in Curved Exponential Families Under Increasing Dimensions , 2007, 0904.3132.