Defect chemical studies on oxygen release from the Li-rich cathode material Li1.2Mn0.6Ni0.2O2−δ

Oxygen release from a Li-rich cathode material was quantitatively evaluated and discussed based on defect chemistry and thermodynamics.

[1]  J. Janek,et al.  Gas Evolution in All-Solid-State Battery Cells , 2018, ACS Energy Letters.

[2]  E. Matsubara,et al.  Strain-Induced Stabilization of Charged State in Li-Rich Layered Transition-Metal Oxide for Lithium-Ion Batteries , 2018, The Journal of Physical Chemistry C.

[3]  Erik J. Berg,et al.  Elucidation of LixNi0.8Co0.15Al0.05O2 Redox Chemistry by Operando Raman Spectroscopy , 2018, Chemistry of Materials.

[4]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[5]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[6]  R. Liu,et al.  Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li 2 MnO 3-δ obtained from pristine Li 2 MnO 3 , 2018 .

[7]  J. Tarascon,et al.  Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes , 2017, Nature Communications.

[8]  V. L. Kozhevnikov,et al.  High-temperature defect thermodynamics of nickel substituted double-perovskite cobaltite PrBaCo2−xNixO6−δ (x = 0.2) , 2017 .

[9]  Muratahan Aykol,et al.  Material design of high-capacity Li-rich layered-oxide electrodes: Li2MnO3 and beyond , 2017 .

[10]  H. Lee,et al.  A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. , 2017, Physical chemistry chemical physics : PCCP.

[11]  L. S. Nam,et al.  Synthesis of Li-Rich Cathode Material with High C-Rate Performance by Reductive Treatment , 2017 .

[12]  Kei Mitsuhara,et al.  Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries , 2016, Nature Communications.

[13]  D. Finegan,et al.  Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study. , 2016, Physical chemistry chemical physics : PCCP.

[14]  S. Lo,et al.  Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions , 2016 .

[15]  P. Bruce,et al.  Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2. , 2016, Journal of the American Chemical Society.

[16]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[17]  Yan Chen,et al.  Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries , 2016, Nature Communications.

[18]  Y. Ukyo,et al.  Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy , 2016 .

[19]  Li Lu,et al.  In operando X-ray absorption spectroscopy study of charge rate effects on the atomic environment in graphene-coated Li-rich mixed oxide cathode , 2016 .

[20]  K. Nakanishi,et al.  Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy , 2016 .

[21]  Y. Tamenori,et al.  The determining factor for interstitial oxygen formation in Ruddlesden-Popper type La2NiO4-based oxides. , 2016, Physical chemistry chemical physics : PCCP.

[22]  K. Nogita,et al.  Understanding the Origin of Li2MnO3 Activation in Li‐Rich Cathode Materials for Lithium‐Ion Batteries , 2015 .

[23]  Viktor Hacker,et al.  Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge , 2015 .

[24]  K. Amezawa,et al.  The effect of interstitial oxygen formation on the crystal lattice deformation in layered perovskite oxides for electrochemical devices , 2015 .

[25]  W. Chueh,et al.  Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions , 2015, Nature Communications.

[26]  Kota Suzuki,et al.  High-pressure synthesis of lithium-rich layered rock-salt Li2(Mn3/8Co1/4Ni3/8)O3-x for lithium battery cathodes , 2014 .

[27]  F. Wang,et al.  The crystal structure, oxygen nonstoichiometry and chemical stability of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF). , 2014, Physical chemistry chemical physics : PCCP.

[28]  B. Hwang,et al.  Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). , 2014, Journal of the American Chemical Society.

[29]  François Weill,et al.  Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[30]  G. Sawatzky,et al.  Role of oxygen holes in Li(x)CoO(2) revealed by soft X-ray spectroscopy. , 2013, Physical review letters.

[31]  Y. Orikasa,et al.  Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure , 2013 .

[32]  A. Manthiram,et al.  Calculations of Oxygen Stability in Lithium-Rich Layered Cathodes , 2012 .

[33]  K. Kubota,et al.  Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes , 2012 .

[34]  K. Kang,et al.  Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries , 2012 .

[35]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[36]  Bilge Yildiz,et al.  Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies , 2012 .

[37]  M. Balasubramanian,et al.  Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy , 2011 .

[38]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[39]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[40]  P. Novák,et al.  Quantification of Oxygen Loss from Li1 + x ( Ni1 / 3Mn1 / 3Co1 / 3 ) 1 − x O2 at High Potentials by Differential Electrochemical Mass Spectrometry , 2009 .

[41]  Shinichi Kinoshita,et al.  Identification of the Source of Evolved Gas in Li-Ion Batteries Using #2#1 -labeled Solvents , 2008 .

[42]  A. West,et al.  Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4 − δ , 2008 .

[43]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[44]  Xiyong Chen,et al.  Thermal and Chemical Expansion of Sr-Doped Lanthanum Cobalt Oxide (La1-xSrxCoO3-δ) , 2005 .

[45]  H. Yokokawa,et al.  Mass transport properties of Ce0.9Gd0.1O2−δ at the surface and in the bulk , 2002 .

[46]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[47]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[48]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[49]  H. Inaba,et al.  Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−xSrxMnO3+d , 2000 .

[50]  J. Dahn,et al.  O2 Structure Li2 / 3 [ Ni 1 / 3 Mn 2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries. I. Electrochemical Properties , 2000 .

[51]  S. Okada,et al.  Thermal behavior of Li1-yNiO2 and the decomposition mechanism , 1998 .

[52]  T. Hioki,et al.  Nonstoichiometry and defect structure of spinel LiMn2O4-δ , 1997 .

[53]  T. Hioki,et al.  Oxygen nonstoichiometry of spinel LiMn2O4 − δ , 1996 .

[54]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[55]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[56]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[57]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[58]  Chen,et al.  Electronic states in La2-xSrxCuO4+ delta probed by soft-x-ray absorption. , 1991, Physical review letters.

[59]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[60]  R. Bhagat,et al.  Lithium ion batteries (NMC/graphite) cycling at 80 °C: Different electrolytes and related degradation mechanism , 2018 .

[61]  M. Tabuchi,et al.  Synthesis of high-capacity Ti- and/or Fe-substituted Li2MnO3 positive electrode materials with high initial cycle efficiency by application of the carbothermal reduction method , 2013 .

[62]  A. Manthiram,et al.  Chemical and structural instability of the chemically delithiated (1 – z) Li[Li1/3Mn2/3]O2·(z) Li[Co1–yNiy]O2 (0 ≤ y ≤ 1 and 0 ≤ z ≤ 1) solid solution cathodes , 2008 .

[63]  James McBreen,et al.  In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries , 2001 .

[64]  C. Wagner The determination of small deviations from the ideal stoichiometric composition of ionic crystals and other binary compounds , 1971 .