Physiological and genomic insights into abiotic stress of halophilic archaeon Natrinema altunense 4.1R isolated from a saline ecosystem of Tunisian desert

[1]  E. Ammar,et al.  Hydrolytic enzyme screening and carotenoid production evaluation of halophilic archaea isolated from highly heavy metal-enriched solar saltern sediments , 2022, Brazilian Journal of Microbiology.

[2]  L. Picot,et al.  Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential , 2022, Marine drugs.

[3]  R. M. Martínez-Espinosa,et al.  Hypersaline environments as natural sources of microbes with potential applications in biotechnology: The case of solar evaporation systems to produce salt in Alicante County (Spain). , 2022, Current research in microbial sciences.

[4]  Zhi‐Feng Zhang,et al.  Biogeography, Assembly Patterns, Driving Factors, and Interactions of Archaeal Community in Mangrove Sediments , 2021, mSystems.

[5]  H. Sghaier,et al.  Assessment of 16S rRNA Gene-Based Phylogenetic Diversity of Archaeal Communities in Halite-Crystal Salts Processed from Natural Saharan Saline Systems of Southern Tunisia , 2021, Biology.

[6]  P. Rettberg,et al.  Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites , 2021, Microbiome.

[7]  I. Furtado,et al.  Characterization of multicomponent antioxidants from  Haloferax alexandrinus GUSF-1 (KF796625) , 2021, 3 Biotech.

[8]  R. Amann,et al.  Distinct ecotypes within a natural haloarchaeal population enable adaptation to changing environmental conditions without causing population sweeps , 2020, The ISME Journal.

[9]  M. Medema,et al.  Pan-genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super-order , 2020, Scientific Reports.

[10]  Z. Nikoloski,et al.  Comparative Analysis of ROS Network Genes in Extremophile Eukaryotes , 2020, International journal of molecular sciences.

[11]  J. DiRuggiero,et al.  Post-transcriptional regulation of redox homeostasis by the small RNA SHOxi in haloarchaea , 2020, bioRxiv.

[12]  M. Bonete,et al.  The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts , 2020, Biomolecules.

[13]  Najwa Taib,et al.  Transient Dynamics of Archaea and Bacteria in Sediments and Brine Across a Salinity Gradient in a Solar Saltern of Goa, India , 2020, Frontiers in Microbiology.

[14]  Jan P. Meier-Kolthoff,et al.  List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ , 2020, International journal of systematic and evolutionary microbiology.

[15]  P. DasSarma,et al.  Earth's Stratosphere and Microbial Life. , 2020, Current issues in molecular biology.

[16]  P. DasSarma,et al.  Earth's Stratosphere and Microbial Life. , 2020, Current issues in molecular biology.

[17]  U. Gophna,et al.  The evolutionary origins of extreme halophilic Archaeal lineages , 2019, bioRxiv.

[18]  You-Liang Peng,et al.  Crystal structures of Magnaporthe oryzae trehalose-6-phosphate synthase (MoTps1) suggest a model for catalytic process of Tps1. , 2019, The Biochemical journal.

[19]  Amy K. Schmid,et al.  Global transcriptional programs in archaea share features with the eukaryotic environmental stress response. , 2019, Journal of molecular biology.

[20]  P. DasSarma,et al.  Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing , 2019, Extremophiles.

[21]  R. Amann,et al.  Predominance of deterministic microbial community dynamics in salterns exposed to different light intensities. , 2019, Environmental microbiology.

[22]  Nancy Merino,et al.  Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context , 2019, Front. Microbiol..

[23]  A. Spang,et al.  Genomic diversity, lifestyles and evolutionary origins of DPANN archaea , 2019, FEMS microbiology letters.

[24]  Chia-Ching Wu,et al.  Fibroblast growth factor 9 activates anti‐oxidative functions of Nrf2 through ERK signalling in striatal cell models of Huntington's disease , 2019, Free radical biology & medicine.

[25]  H. Sghaier,et al.  Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert. , 2019, Genomics.

[26]  H. Yano,et al.  Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission. , 2018, Astrobiology.

[27]  F. Pfeifer,et al.  Interaction of Haloarchaeal Gas Vesicle Proteins Determined by Split-GFP , 2018, Front. Microbiol..

[28]  B. Orcutt,et al.  Low Energy Subsurface Environments as Extraterrestrial Analogs , 2018, Front. Microbiol..

[29]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[30]  P. DasSarma,et al.  Survival of microbes in Earth's stratosphere. , 2018, Current opinion in microbiology.

[31]  N. Gunde-Cimerman,et al.  Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. , 2018, FEMS microbiology reviews.

[32]  B. Baxter,et al.  DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea , 2017, Front. Microbiol..

[33]  A. Morana,et al.  Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: identification and antioxidant activity , 2017, Extremophiles.

[34]  J. Chun,et al.  Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies , 2017, International journal of systematic and evolutionary microbiology.

[35]  Shiming Xiang,et al.  Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[36]  S. Okay,et al.  Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea. , 2017, Gene.

[37]  Henrik Nielsen,et al.  Predicting Secretory Proteins with SignalP. , 2017, Methods in molecular biology.

[38]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[39]  Z. Rao,et al.  Structural insight into dephosphorylation by trehalose 6‐phosphate phosphatase (OtsB2) from Mycobacterium tuberculosis , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  F. Huyop,et al.  Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments , 2016, World Journal of Microbiology and Biotechnology.

[41]  Eric P. Nawrocki,et al.  NCBI prokaryotic genome annotation pipeline , 2016, Nucleic acids research.

[42]  Ajar Nath Yadav,et al.  Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment - , 2016 .

[43]  T. Patarnello,et al.  Characterization and expression of a new cytoplasmic glutathione peroxidase 1 gene in the Antarctic fish Trematomus bernacchii , 2015, Hydrobiologia.

[44]  Friedhelm Pfeiffer,et al.  A Manual Curation Strategy to Improve Genome Annotation: Application to a Set of Haloarchael Genomes , 2015, Life.

[45]  Yi Wang,et al.  OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species , 2015, Nucleic Acids Res..

[46]  Noha H. Youssef,et al.  Patterns and Determinants of Halophilic Archaea (Class Halobacteria) Diversity in Tunisian Endorheic Salt Lakes and Sebkhet Systems , 2015, Applied and Environmental Microbiology.

[47]  J. DiRuggiero,et al.  Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. , 2015, Environmental microbiology.

[48]  B. Burns,et al.  Adaptation, Ecology, and Evolution of the Halophilic Stromatolite Archaeon Halococcus hamelinensis Inferred through Genome Analyses , 2015, Archaea.

[49]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[50]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[51]  Erin A. Becker,et al.  Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response , 2014, PLoS genetics.

[52]  Gert Vriend,et al.  YASARA View—molecular graphics for all devices—from smartphones to workstations , 2014, Bioinform..

[53]  H. Santos,et al.  Glutamine synthetase 2 is not essential for biosynthesis of compatible solutes in Halobacillus halophilus , 2014, Front. Microbiol..

[54]  N. Youssef,et al.  Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales , 2013, The ISME Journal.

[55]  Konstantinos T. Konstantinidis,et al.  Bypassing Cultivation To Identify Bacterial Species , 2014 .

[56]  A. Najjari,et al.  Cultivation-Dependant Assessment, Diversity, and Ecology of Haloalkaliphilic Bacteria in Arid Saline Systems of Southern Tunisia , 2013, BioMed research international.

[57]  F. Mapelli,et al.  Uneven Distribution of Halobacillus trueperi Species in Arid Natural Saline Systems of Southern Tunisian Sahara , 2013, Microbial Ecology.

[58]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[59]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[60]  Alexander F. Auch,et al.  Genome sequence-based species delimitation with confidence intervals and improved distance functions , 2013, BMC Bioinformatics.

[61]  M. Facciotti,et al.  An Integrated Pipeline for de Novo Assembly of Microbial Genomes , 2012, PloS one.

[62]  B. Liu,et al.  The Complete Genome Sequence of Natrinema sp. J7-2, a Haloarchaeon Capable of Growth on Synthetic Media without Amino Acid Supplements , 2012, PloS one.

[63]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[64]  Mohammad Pessarakli,et al.  Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions , 2012 .

[65]  D. Jeruzalmi,et al.  Structure and mechanism of the UvrA–UvrB DNA damage sensor , 2012, Nature Structural &Molecular Biology.

[66]  Peter Williams,et al.  IMG: the integrated microbial genomes database and comparative analysis system , 2011, Nucleic Acids Res..

[67]  J. DiRuggiero,et al.  DNA Replication and Repair in Halophiles , 2012 .

[68]  D. Hilger,et al.  The Na⁺/L-proline transporter PutP. , 2012, Frontiers in bioscience.

[69]  R. Vreeland Advances in Understanding the Biology of Halophilic Microorganisms , 2012, Springer Netherlands.

[70]  Y. Jeon,et al.  Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. , 2011, Astrobiology.

[71]  J. Jeong,et al.  Role of oxidative stress in epileptic seizures , 2011, Neurochemistry International.

[72]  Alessio Mengoni,et al.  CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes , 2011, Source Code for Biology and Medicine.

[73]  P. DasSarma,et al.  The information transfer system of halophilic archaea. , 2011, Plasmid.

[74]  L. Rothschild,et al.  Molecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. , 2011, Journal of photochemistry and photobiology. B, Biology.

[75]  K. Fukui,et al.  Molecular Mechanisms of the Whole DNA Repair System: A Comparison of Bacterial and Eukaryotic Systems , 2010, Journal of nucleic acids.

[76]  Boris Martinac,et al.  Mechanosensitive channels in microbes. , 2010, Annual review of microbiology.

[77]  Roxane Lestini,et al.  The archaeal Xpf/Mus81/FANCM homolog Hef and the Holliday junction resolvase Hjc define alternative pathways that are essential for cell viability in Haloferax volcanii. , 2010, DNA repair.

[78]  Courtney K. Robinson,et al.  Coordination of frontline defense mechanisms under severe oxidative stress , 2010, Molecular systems biology.

[79]  C. Shih,et al.  Differentially expressed genes after hyper- and hypo-salt stress in the halophilic archaeon Methanohalophilus portucalensis. , 2010, Canadian journal of microbiology.

[80]  Hans-Peter Klenk,et al.  Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs , 2010, Standards in genomic sciences.

[81]  Sangho Lee Crystal Structure of the Metal-bound Superoxide Dismutase from Pyrobaculum aerophilum and Comparison with the Metal-free Form , 2009 .

[82]  A. Oren,et al.  Emended descriptions of genera of the family Halobacteriaceae. , 2009, International journal of systematic and evolutionary microbiology.

[83]  Mark Dopson,et al.  Cytoplasmic pH measurement and homeostasis in bacteria and archaea. , 2009, Advances in microbial physiology.

[84]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[85]  A. Oren Microbial life at high salt concentrations: phylogenetic and metabolic diversity , 2008, Saline systems.

[86]  Orland R. Gonzalez,et al.  Metabolism of halophilic archaea , 2008, Extremophiles.

[87]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[88]  C. Marshall,et al.  Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. , 2007, Astrobiology.

[89]  V. Müller,et al.  Salinity-Dependent Switching of Osmolyte Strategies in a Moderately Halophilic Bacterium: Glutamate Induces Proline Biosynthesis in Halobacillus halophilus , 2007, Journal of bacteriology.

[90]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[91]  B. Van Houten,et al.  Structure of the C‐terminal half of UvrC reveals an RNase H endonuclease domain with an Argonaute‐like catalytic triad , 2007, The EMBO journal.

[92]  A. Mendoza-Vargas,et al.  Insights on the evolution of trehalose biosynthesis , 2006, BMC Evolutionary Biology.

[93]  S. DasSarma,et al.  The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1 , 2006, Saline systems.

[94]  Friedhelm Pfeiffer,et al.  The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity , 2006, BMC Genomics.

[95]  T. Barrett,et al.  Structural insights into the cryptic DNA-dependent ATPase activity of UvrB. , 2006, Journal of molecular biology.

[96]  S. MacNeill,et al.  ATP‐ and NAD+‐dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii , 2006, Molecular microbiology.

[97]  M. Roberts Organic compatible solutes of halotolerant and halophilic microorganisms , 2005, Saline Systems.

[98]  Shiladitya DasSarma,et al.  UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1 , 2005, Saline systems.

[99]  Xue-Wei Xu,et al.  Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, China. , 2005, International journal of systematic and evolutionary microbiology.

[100]  J. DiRuggiero,et al.  Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation , 2005, Extremophiles.

[101]  Min Pan,et al.  Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. , 2004, Genome research.

[102]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[103]  W. Grant Life at low water activity. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[104]  H. Komori,et al.  DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction. , 2004, Acta crystallographica. Section D, Biological crystallography.

[105]  K. Timmis,et al.  Isolation of haloarchaea that grow at low salinities. , 2004, Environmental microbiology.

[106]  B. Roe,et al.  Survey of Archaeal Diversity Reveals an Abundance of Halophilic Archaea in a Low-Salt, Sulfide- and Sulfur-Rich Spring , 2004, Applied and Environmental Microbiology.

[107]  C. Johnson,et al.  Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon , 2004, Photosynthesis Research.

[108]  R. Mancinelli,et al.  Brines and evaporites: analogs for Martian life , 2004 .

[109]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[110]  H. Eicken,et al.  The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. , 2003, Astrobiology.

[111]  G. Kargl,et al.  Astrobiology with haloarchaea from Permo-Triassic rock salt , 2002, International Journal of Astrobiology.

[112]  Lenwood S Heath,et al.  Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. , 2002, Journal of experimental botany.

[113]  J. Hoeijmakers Genome maintenance mechanisms for preventing cancer , 2001, Nature.

[114]  O. Carmel-Harel,et al.  Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. , 2000, Annual review of microbiology.

[115]  B. Harfe,et al.  DNA mismatch repair and genetic instability. , 2000, Annual review of genetics.

[116]  I. Booth,et al.  Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. , 1999, Current opinion in microbiology.

[117]  H Terato,et al.  Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. , 1998, Journal of radiation research.

[118]  T. McGenity,et al.  Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. , 1998, International Journal of Systematic Bacteriology.

[119]  Joel P. Brockman,et al.  RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. , 1998, Genes & development.

[120]  M. Anderson,et al.  Glutathione: an overview of biosynthesis and modulation. , 1998, Chemico-biological interactions.

[121]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[122]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[123]  A. Sancar DNA excision repair. , 1996, Annual review of biochemistry.

[124]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[125]  M. Cox,et al.  The RecA protein as a recombinational repair system , 1991, Molecular microbiology.

[126]  D. Lane 16S/23S rRNA sequencing , 1991 .

[127]  D. Gospodarowicz,et al.  Fibroblast growth factor , 1986, Molecular and Cellular Endocrinology.