Damping Matrix Identification by Finite Element Model Updating Using Frequency Response Data

Accurate modeling of damping is essential for prediction of vibration response of a structure. This paper presents a study of damping matrix identification method using experimental data. The identification is done by performing finite element (FE) model updating using normal frequency response functions (FRFs). The paper addresses some key issues like data incompleteness and computation of the normal FRFs for carrying out the model updating using experimental data. The effect of various levels of damping in structures on the performance of the identification techniques is also investigated. Experimental studies on three beam structures made up of mild steel, cast iron and acrylic are presented to demonstrate the effectiveness of the identification techniques for different levels of damping.

[1]  John E. Mottershead,et al.  An instrumental variable method for the estimation of mass, stiffness and damping parameters from measured frequency response functions , 1988 .

[2]  Subrata Chakraborty,et al.  IDENTIFICATION OF DAMPING PARAMETERS OF LINEAR DYNAMIC SYSTEM , 2009 .

[3]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[4]  Hejun Du,et al.  A new complex inverse eigensensitivity method for structural damping model identification , 1994 .

[5]  Y. J. Chen,et al.  DIRECT VERSUS ITERATIVE MODEL UPDATING METHODS FOR MASS AND STIFFNESS MATRICES , 2010 .

[6]  Rongming Lin,et al.  Model updating of damped structures using FRF data , 2006 .

[7]  A. Berman,et al.  Improvement of a Large Analytical Model Using Test Data , 1983 .

[8]  Ming-Shaung Ju,et al.  Estimation of Mass, Stiffness and Damping Matrices from Frequency Response Functions , 1996 .

[9]  Nuno M. M. Maia,et al.  On a General Model for Damping , 1998 .

[10]  Edward J. Berger,et al.  Friction modeling for dynamic system simulation , 2002 .

[11]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[12]  Claus-Peter Fritzen,et al.  Identification of mass, damping, and stiffness matrices of mechanical systems , 1986 .

[13]  Yong Lu,et al.  A two-level neural network approach for dynamic FE model updating including damping , 2004 .

[14]  S. V. Modak,et al.  A method for damping matrix identification using frequency response data , 2012 .

[15]  P. Lancaster,et al.  Free Vibration and Hysteretic Damping , 1960, The Journal of the Royal Aeronautical Society.

[16]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[17]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[18]  B. Datta,et al.  An optimization technique for damped model updating with measured data satisfying quadratic orthogonality constraint , 2009 .

[19]  T. K. Kundra,et al.  Comparative study of model updating methods using simulated experimental data , 2002 .

[20]  J. D. Collins,et al.  Statistical Identification of Structures , 1973 .

[21]  Y. Halevi,et al.  Model updating of the complex modeshapes and the damping matrix , 2000 .

[22]  Ranjan Ganguli,et al.  Finite Element Model Updating for Helicopter Rotor Blade Using Genetic Algorithm , 2003 .

[23]  François M. Hemez,et al.  Extending Sensitivity-Based Updating to Lightly Damped Structures , 1997 .

[24]  Jim Woodhouse,et al.  LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION , 1998 .

[25]  Charles W. Bert,et al.  Material damping: An introductory review of mathematic measures and experimental technique , 1973 .

[26]  M. Friswell,et al.  Direct Updating of Damping and Stiffness Matrices , 1998 .

[27]  M. Imregun,et al.  Technical Article: practical articles in shock and vibration technology , 1991 .