Diversity-based selection pooling scheme in evolution strategies

Actual implementations of standard Evolution Strategies (ES) suffer from premature convergence. This results from greediness in the ranking-based selection scheme as well as a lack of feedback on the efficacy of mutation step adaptation. This paper proposes a simple modification to minimize adverse effects of the above-mentioned evolution operators on algorithm performance by a diversity-based pooling scheme. Tests on several benchmark problems vindicate the virtue of this modification. The modified algorithm also sheds light on convergence status of the population with respect to a given optimization task, hence allowing further improvements toward premature convergence checking and parallel search algorithms.

[1]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[2]  Cheng-Yan Kao,et al.  Applying Family Competition to Evolution Strategies for Constrained Optimization , 1997, Evolutionary Programming.

[3]  Hans-Paul Schwefel,et al.  Where Elitists Start Limping Evolution Strategies at Ridge Functions , 1998, PPSN.

[4]  David B. Fogel,et al.  Tuning Evolutionary Programming for Conformationally Flexible Molecular Docking , 1996, Evolutionary Programming.

[5]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[6]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[7]  Joerg joke Heitkoetter,et al.  The hitch-hiker''s guide to evolutionary computation , 2001 .

[8]  T. Back,et al.  On the behavior of evolutionary algorithms in dynamic environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[9]  F. Kursawe,et al.  On natural life's tricks to survive and evolve , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[11]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[12]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[13]  Olivier François,et al.  An evolutionary strategy for global minimization and its Markov chain analysis , 1998, IEEE Trans. Evol. Comput..

[14]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.