Effect of metal electrodes on rubrene single-crystal transistors

The authors herein have investigated the effect of the metal work function on the performance of rubrene single-crystal transistors using gold and calcium metal electrodes. The current-voltage characteristic is controlled by the metal work function, which offers the possibility of controlling the Schottky barrier height by the choice of the metal. In the process of the study of metal-rubrene contacts, the authors have realized an ambipolar transistor and a Schottky diode in an identical single-crystal device with asymmetric electrodes. These data provide direct evidence of the weak Fermi level pinning and formation of depletion layer on metal-rubrene contacts.

[1]  H. Tada,et al.  Preparation of organic light-emitting field-effect transistors with asymmetric electrodes , 2005 .

[2]  A. Morpurgo,et al.  Influence of surface traps on space-charge limited current , 2005 .

[3]  Richard H. Friend,et al.  Spatial control of the recombination zone in an ambipolar light-emitting organic transistor , 2006 .

[4]  Y. Aoyagi,et al.  Hall Effect of Quasi-Hole Gas in Organic Single-Crystal Transistors , 2005, cond-mat/0511188.

[5]  Gilles Horowitz,et al.  High‐Performance Ambipolar Pentacene Organic Field‐Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric , 2005 .

[6]  Yoshihiro Iwasa,et al.  Ambipolar organic field-effect transistors based on rubrene single crystals , 2006 .

[7]  Alan J. Heeger,et al.  Light emission from an ambipolar semiconducting polymer field-effect transistor , 2005 .

[8]  Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors , 2004, cond-mat/0407407.

[9]  Y. Tokura,et al.  Organic metal electrodes for controlled p- and n-type carrier injections in organic field-effect transistors , 2006 .

[10]  M. Niwano,et al.  Ambipolar operation of fullerene field-effect transistors by semiconductor/metal interface modification , 2005 .

[11]  M. F. Craciun,et al.  Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors , 2005 .

[12]  J A Rogers,et al.  Hall effect in the accumulation layers on the surface of organic semiconductors. , 2005, Physical review letters.

[13]  Tetsuo Tsutsui,et al.  Ambipolar pentacene field-effect transistors with calcium source-drain electrodes , 2004 .

[14]  T. Takayanagi,et al.  Fabrication of a logic gate circuit based on ambipolar field-effect transistors with thin films of C60 and pentacene , 2005 .

[15]  J A Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[16]  V. Podzorov,et al.  Organic single-crystal field-effect transistors , 2004 .

[17]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[18]  B. Batlogg,et al.  Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals , 2003 .