Uncertainty Relations for Coarse–Grained Measurements: An Overview

Uncertainty relations involving incompatible observables are one of the cornerstones of quantum mechanics. Aside from their fundamental significance, they play an important role in practical applications, such as detection of quantum correlations and security requirements in quantum cryptography. In continuous variable systems, the spectra of the relevant observables form a continuum and this necessitates the coarse graining of measurements. However, these coarse-grained observables do not necessarily obey the same uncertainty relations as the original ones, a fact that can lead to false results when considering applications. That is, one cannot naively replace the original observables in the uncertainty relation for the coarse-grained observables and expect consistent results. As such, several uncertainty relations that are specifically designed for coarse-grained observables have been developed. In recognition of the 90th anniversary of the seminal Heisenberg uncertainty relation, celebrated last year, and all the subsequent work since then, here we give a review of the state of the art of coarse-grained uncertainty relations in continuous variable quantum systems, as well as their applications to fundamental quantum physics and quantum information tasks. Our review is meant to be balanced in its content, since both theoretical considerations and experimental perspectives are put on an equal footing.

[1]  John C. Howell,et al.  Violation of continuous variable EPR steering with discrete measurements , 2013, CLEO 2013.

[2]  I. Hirschman,et al.  A Note on Entropy , 1957 .

[3]  Optimal states for Bell-inequality violations using quadrature-phase homodyne measurements , 1999, quant-ph/0002001.

[4]  S. Walborn,et al.  Experimental observation of quantum correlations in modular variables , 2012, 1208.6222.

[5]  Y. Aharonov,et al.  Modular variables in quantum theory , 1969 .

[6]  W. Vogel,et al.  Fake violations of the quantum Bell-parameter bound , 2010, 1004.3700.

[7]  Lukasz Rudnicki,et al.  Optimal uncertainty relations for extremely coarse-grained measurements , 2012, 1204.5170.

[8]  S. Walborn,et al.  Family of continuous-variable entanglement criteria using general entropy functions , 2010, 1005.1045.

[9]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  K. Babenko,et al.  An inequality in the theory of Fourier integrals , 1961 .

[11]  Otfried Gühne,et al.  Contextuality in Phase Space. , 2015, Physical review letters.

[12]  P. Busch,et al.  To what extent do position and momentum commute , 1986 .

[13]  H. P. Robertson The Uncertainty Principle , 1929 .

[14]  P. Busch,et al.  Heisenberg's uncertainty principle , 2006, quant-ph/0609185.

[15]  I. Bialynicki-Birula,et al.  Entropic uncertainty relations , 1984 .

[16]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[17]  Separability and Distillability of bipartite Gaussian States – the Complete Story , 2001 .

[18]  Ali Asadian,et al.  Heisenberg-Weyl Observables: Bloch vectors in phase space , 2015, 1512.05640.

[19]  Lukasz Rudnicki,et al.  Majorization entropic uncertainty relations , 2013, ArXiv.

[20]  Lukasz Rudnicki,et al.  Comment on Uncertainty relations in terms of the Tsallis entropy , 2010 .

[21]  M. Partovi Majorization formulation of uncertainty in quantum mechanics , 2010, 1012.3481.

[22]  S. Walborn,et al.  Continuous discretization of infinite-dimensional Hilbert spaces , 2013, 1310.4452.

[23]  K. Hornberger,et al.  Detecting entanglement in spatial interference. , 2011, Physical review letters.

[24]  Uncertainty relations for characteristic functions , 2015, 1505.04638.

[25]  F. Narcowich Geometry and uncertainty , 1990 .

[26]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[27]  S. Walborn,et al.  Reliable entanglement detection under coarse-grained measurements. , 2012, Physical review letters.

[28]  Christoph Simon,et al.  Three-photon energy–time entanglement , 2012, Nature Physics.

[29]  T. Heinonen,et al.  Noise and disturbance in quantum measurement , 2004 .

[30]  Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber. , 2001, Physical review letters.

[31]  S. P. Walborn,et al.  Systematic construction of genuine-multipartite-entanglement criteria in continuous-variable systems using uncertainty relations , 2014, 1407.7248.

[32]  Mark Hillery,et al.  Entanglement conditions for two-mode states. , 2006, Physical review letters.

[33]  R. Simon,et al.  The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.

[34]  Yichen Huang,et al.  Entropic uncertainty relations in multidimensional position and momentum spaces , 2011, 1101.2944.

[35]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[36]  W. Beckner Inequalities in Fourier analysis , 1975 .

[37]  S. Barnett,et al.  Quantum correlations in position, momentum, and intermediate bases for a full optical field of view , 2012 .

[38]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[39]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[40]  Angelo Bassi,et al.  Quantum Mechanics: Are there Quantum Jumps? and On the Present Status of Quantum Mechanics , 2006 .

[41]  G. Buller,et al.  Imaging high-dimensional spatial entanglement with a camera , 2012, Nature Communications.

[42]  S. P. Walborn,et al.  Double-slit quantum eraser , 2001, quant-ph/0106078.

[43]  S. Wehner,et al.  Entropic uncertainty from effective anticommutators , 2014, 1402.5722.

[44]  Gerardo Adesso,et al.  Hierarchy of Steering Criteria Based on Moments for All Bipartite Quantum Systems. , 2015, Physical review letters.

[45]  Goodman,et al.  Quantum correlations: A generalized Heisenberg uncertainty relation. , 1988, Physical review letters.

[46]  James Schneeloch,et al.  Quantifying high-dimensional entanglement with Einstein-Podolsky-Rosen correlations , 2017, 1709.03626.

[47]  F. Furrer,et al.  Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.

[48]  Wang Xiaotong,et al.  Generalized entropic uncertainty principle on fractional Fourier transform , 2009, Signal Process..

[49]  Reid,et al.  Quantum correlations of phase in nondegenerate parametric oscillation. , 1988, Physical review letters.

[50]  A. Rastegin On entropic uncertainty relations in the presence of a minimal length , 2016, 1607.08512.

[51]  S. Walborn,et al.  Observation of tunable Popescu-Rohrlich correlations through postselection of a Gaussian state , 2009, 0909.2907.

[52]  Shiro Ishikawa,et al.  Uncertainty relations in simultaneous measurements for arbitrary observables , 1991 .

[53]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[54]  Ł. Rudnicki Shannon entropy as a measure of uncertainty in positions and momenta , 2011, 1108.3828.

[55]  N. Treps,et al.  An experimental investigation of criteria for continuous variable entanglement , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[56]  M. Kim,et al.  Coarsening measurement references and the quantum-to-classical transition. , 2013, Physical review letters.

[57]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[58]  Coarse graining makes it hard to see micro-macro entanglement. , 2011, Physical review letters.

[59]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.

[60]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[61]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[62]  C. Simon,et al.  Precision requirements for observing macroscopic quantum effects , 2013 .

[63]  D. Minic,et al.  On the Minimal Length Uncertainty Relation and the Foundations of String Theory , 2011, 1106.0068.

[64]  R. Werner,et al.  Proof of Heisenberg's error-disturbance relation. , 2013, Physical review letters.

[65]  S. J. van Enk,et al.  Missing data outside the detector range. II. Application to time-frequency entanglement , 2013 .

[66]  Alexei Gilchrist,et al.  Contradiction of quantum mechanics with local hidden variables for quadrature phase measurements on pair-coherent states and squeezed macroscopic superpositions of coherent states , 1999 .

[67]  Patrick J. Coles,et al.  Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.

[68]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[69]  Maximal violation of Bell inequalities using continuous-variable measurements , 2002, quant-ph/0211067.

[70]  S. Walborn,et al.  Detecting entanglement of continuous variables with three mutually unbiased bases , 2016, 1604.07347.

[71]  S. Walborn,et al.  Quantum entanglement beyond Gaussian criteria , 2009, Proceedings of the National Academy of Sciences.

[72]  Iwo Bialynicki-Birula Formulation of the uncertainty relations in terms of the Rényi entropies , 2006 .

[73]  N J Cerf,et al.  Proposal for a loophole-free Bell test using homodyne detection. , 2004, Physical review letters.

[74]  Christopher C. Tison,et al.  Quantifying entanglement in a 68-billion dimensional quantum system , 2018 .

[75]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[76]  M. S. Zubairy,et al.  Uncertainty inequalities as entanglement criteria for negative partial-transpose States. , 2008, Physical review letters.

[77]  Thomas Schürmann,et al.  A Closer Look at the Uncertainty Relation of Position and Momentum , 2008, 0811.2582.

[78]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[79]  T. Paterek,et al.  Small sets of complementary observables , 2016, 1611.08962.

[80]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[81]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[82]  M. Martinelli,et al.  Generation of bright two-color continuous variable entanglement. , 2005, Physical review letters.

[83]  P. H. Souto Ribeiro,et al.  Continuous-variable quantum computation with spatial degrees of freedom of photons , 2011, 1106.3049.

[84]  S. Friedland,et al.  Universal uncertainty relations. , 2013, Physical review letters.

[85]  E. Condon The Theory of Groups and Quantum Mechanics , 1932 .

[86]  C. Saavedra,et al.  Quantum process reconstruction based on mutually unbiased basis , 2011, 1104.2888.

[87]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[88]  Invariant theoretic approach to uncertainty relations for quantum systems , 2012, 1205.5132.

[89]  W. Thirring,et al.  Arex andp incompatible observables? , 1989 .

[90]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[91]  Yanhua Shih,et al.  Identifying entanglement using quantum "ghost" interference and imaging , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[92]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[93]  Inseparability inequalities for higher order moments for bipartite systems , 2005, quant-ph/0507144.

[94]  S. P. Walborn,et al.  Propagation of transverse intensity correlations of a two-photon state , 2009, 0902.1660.

[95]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[96]  Reinhard F. Werner The uncertainty relation for joint measurement of position and momentum , 2004, Quantum Inf. Comput..

[97]  W. Fuchs On the eigenvalues of an integral equation arising in the theory of band-limited signals , 1964 .

[98]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[99]  Jaehak Lee,et al.  Steering criteria via covariance matrices of local observables in arbitrary-dimensional quantum systems , 2015, 1509.02550.

[100]  Tristan B H Tentrup,et al.  Transmitting more than 10 bit with a single photon. , 2016, Optics express.

[101]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[102]  M. Wolf,et al.  Bound entangled Gaussian states. , 2000, Physical review letters.

[103]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[104]  S. Brierley,et al.  Entanglement detection via mutually unbiased bases , 2012, 1202.5058.

[105]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[106]  Robert W. Boyd,et al.  EPR-based ghost imaging using a single-photon-sensitive camera , 2012, 1212.5059.

[107]  P. H. Souto Ribeiro,et al.  Detection of transverse entanglement in phase space , 2008, 0806.3044.

[108]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[109]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[110]  S. Walborn,et al.  Detecting multipartite spatial entanglement with modular variables , 2015 .

[111]  Shih,et al.  Delayed "Choice" quantum eraser , 1999, Physical review letters.

[112]  S. Haroche,et al.  A complementarity experiment with an interferometer at the quantum–classical boundary , 2001, Nature.

[113]  S. J. van Enk,et al.  Missing data outside the detector range: Continuous-variable entanglement verification and quantum cryptography , 2013 .

[114]  R. Schnabel,et al.  Experimental test of nonclassicality criteria for phase-diffused squeezed states , 2008, 0812.3015.

[115]  V. Giovannetti,et al.  Characterizing the entanglement of bipartite quantum systems , 2002, quant-ph/0210155.

[116]  M. Padgett,et al.  Testing for entanglement with periodic coarse graining , 2015, 1506.01095.

[117]  M. Ozawa Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement , 2002, quant-ph/0207121.

[118]  W. Vogel,et al.  Nonclassicality of quantum states: a hierarchy of observable conditions. , 2002, Physical review letters.

[119]  A. Gilchrist,et al.  Contradiction of quantum mechanics with local hidden variables for quadrature phase amplitude measurements , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[120]  M. Tomasin,et al.  Quantum randomness certified by the uncertainty principle , 2014, 1401.7917.

[121]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[122]  J. Sperling,et al.  Unified nonclassicality criteria , 2015, 1505.06089.

[123]  S. Weigert,et al.  Mutually unbiased bases for continuous variables , 2008, 0802.0394.

[124]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[125]  M. Sentís Quantum theory of open systems , 2002 .

[126]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[127]  S. Walborn,et al.  Quantum information processing in phase space: A modular variables approach , 2015, 1512.02957.

[128]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[129]  Se-Wan Ji,et al.  Gaussian states under coarse-grained continuous variable measurements , 2014, 1406.2305.

[130]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[131]  Masanao Ozawa Uncertainty relations for noise and disturbance in generalized quantum measurements , 2003 .

[132]  W Vogel,et al.  Inseparability criteria for continuous bipartite quantum states. , 2005, Physical review letters.

[133]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[134]  S. Zozor,et al.  General entropy-like uncertainty relations in finite dimensions , 2013, 1311.5602.

[135]  K. Życzkowski,et al.  Majorization uncertainty relations for mixed quantum states , 2017, 1709.10294.

[136]  Lukasz Rudnicki,et al.  Entropic Uncertainty Relations in Quantum Physics , 2010, 1001.4668.

[137]  M. Partovi Entropic formulation of uncertainty for quantum measurements , 1983 .

[138]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[139]  Mario Krenn,et al.  Quantifying high dimensional entanglement with two mutually unbiased bases , 2015, 1512.05315.

[140]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.

[141]  K. Życzkowski,et al.  Strong majorization entropic uncertainty relations , 2014, 1402.0129.

[142]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[143]  E. Cavalcanti,et al.  Quantum Paradoxes , 2010 .

[144]  Xiaotong Wang,et al.  Generalized entropic uncertainty principle on fractional Fourier transform , 2009, Signal Process..

[145]  D Cavalcanti,et al.  Quantum steering: a review with focus on semidefinite programming , 2016, Reports on progress in physics. Physical Society.

[146]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[147]  Grzegorz Wilk,et al.  Uncertainty relations in terms of Tsallis entropy , 2008, 0806.1660.

[148]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[149]  M. Raymer Uncertainty principle for joint measurement of noncommuting variables , 1994 .

[150]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[151]  R. Lindsay,et al.  The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .

[152]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[153]  Caslav Brukner,et al.  Conditions for quantum violation of macroscopic realism. , 2007, Physical review letters.

[154]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[155]  T. Rudolph,et al.  Quantum and classical entropic uncertainty relations , 2014, 1402.1143.

[156]  Entropic uncertainty relations for angular distributions , 1985 .

[157]  M. Ozawa Universal uncertainty principle in the measurement operator formalism , 2005, quant-ph/0510083.

[158]  M. Martinelli,et al.  Three-Color Entanglement , 2009, Science.

[159]  Th. Richter,et al.  Nonclassicality criteria in terms of moments , 2005 .

[160]  Frédéric Grosshans,et al.  Continuous-variable quantum cryptography is secure against non-Gaussian attacks. , 2004, Physical review letters.

[161]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[162]  Paul Busch,et al.  Indeterminacy relations and simultaneous measurements in quantum theory , 1985 .

[163]  P. Ehrenfest,et al.  Begriffliche Grundlagen der Statistischen Auffassung in der Mechanik , 1907 .

[164]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[165]  S. Walborn,et al.  General conditions for maximal violation of non-contextuality in discrete and continuous variables , 2015, 1512.03334.

[166]  L. Mandel,et al.  Coherence and indistinguishability. , 1991, Optics letters.

[167]  Greenberger-Horne-Zeilinger paradox for continuous variables , 2001, quant-ph/0103048.

[168]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[169]  Eric Lantz,et al.  Einstein-Podolsky-Rosen paradox in twin images. , 2014, Physical review letters.

[170]  John M Donohue,et al.  Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs. , 2017, Physical review letters.

[171]  J. Sperling,et al.  Verifying continuous-variable entanglement in finite spaces , 2008, 0809.3197.

[172]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[173]  Abdel Nasser Tawfik,et al.  A review of the generalized uncertainty principle , 2015, Reports on progress in physics. Physical Society.

[174]  Vogel Nonclassical states: An observable criterion , 2000, Physical review letters.

[175]  J. Eisert,et al.  Optimal entanglement witnesses for continuous-variable systems , 2005, quant-ph/0510077.

[176]  Caslav Brukner,et al.  Classical world arising out of quantum physics under the restriction of coarse-grained measurements. , 2007, Physical review letters.

[177]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[178]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[179]  S. Walborn,et al.  Entropic entanglement criteria for continuous variables. , 2009, Physical review letters.

[180]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[181]  Masanao Ozawa Uncertainty relations for joint measurements of noncommuting observables , 2004 .

[182]  M J Padgett,et al.  Characterization of high-dimensional entangled systems via mutually unbiased measurements. , 2012, Physical review letters.

[183]  Lukasz Rudnicki,et al.  Majorization approach to entropic uncertainty relations for coarse-grained observables , 2015, 1503.03682.

[184]  A. Plastino,et al.  State-independent quantum contextuality for continuous variables , 2010, 1005.1620.

[185]  Commuting Functions of the Position and Momentum Observables on Locally Compact Abelian Groups , 1989 .

[186]  S. Walborn,et al.  Mutually unbiased coarse-grained measurements of two or more phase-space variables , 2018, 1804.04480.

[187]  Jonathan Leach,et al.  Single-photon position to time multiplexing using a fiber array. , 2011, Optics express.