The discrimination of blur in peripheral coloured borders

Our interest is in measuring the threshold for blur, for long borders at well-defined retinal eccentricities between large fields of colour. Our method is to precisely match a centrally fixated sharp-edged disk of one colour against a surround of another, using the minimum distinct border criterion. We then measure the amount of added Gaussian blur that makes the sharp step-edged border just noticeably different. The selected colours are small fixed chromatic deviations of 500 msec duration from an adaptive low photopic or mesopic white. The effects of retinal eccentricity are striking. Blur thresholds are large for yellow-blue borders centrally (at 1.25 degrees eccentricity) and extremely large for red-green borders peripherally (at 20 degrees). Blur thresholds are generally larger for isoluminous chromatic borders than for a low contrast achromatic border. Accurate Rovamo-Virsu M-scaling is limited to photopic achromatic borders.

[1]  B. Stabell,et al.  Spectral sensitivity of the dark-adapted extrafoveal retina at photopic intensities. , 1981, Journal of the Optical Society of America.

[2]  R. M. Boynton,et al.  Blue cones contribute to border distinctness , 1985, Vision Research.

[3]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[4]  Jyrki Rovamo,et al.  Detection of chromatic deviations from white across the human visual field , 1991, Vision Research.

[5]  B. B. Lee,et al.  The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. , 1990, The Journal of physiology.

[6]  P. Kaiser,et al.  Color discrimination perimetry (A) , 1982 .

[7]  R. Hunt Colour Science : Concepts and Methods, Quantitative Data and Formulas , 1968 .

[8]  R M Boynton,et al.  Chromatic border distinctness and its relation to saturation. , 1971, Vision research.

[9]  B. Stabell,et al.  Color-vision mechanisms of the extrafoveal retina , 1984, Vision Research.

[10]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[11]  I. Abramov,et al.  Color vision in the peripheral retina. I. Spectral sensitivity. , 1977, Journal of the Optical Society of America.

[12]  P. E. Hallett,et al.  Detection of briefly flashed sine-gratings in dark-adapted vision , 1990, Vision Research.

[13]  Additivity in the tetrachromatic colour matching system. , 1974, Vision research.

[14]  I. Rentschler Spatial summation in color-receptive pathways. , 1973, Vision research.

[15]  R. M. Boynton,et al.  Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level. , 1981, Journal of the Optical Society of America.

[16]  William B. Cowan,et al.  An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates , 1983, SIGGRAPH.

[17]  B. Stabell,et al.  Variation in density of macular pigmentation and in short-wave cone sensitivity with eccentricity. , 1980, Journal of the Optical Society of America.

[18]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[19]  D. Jameson,et al.  Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. , 1955, Journal of the Optical Society of America.

[20]  Bjørn Stabell,et al.  Color vision in the peripheral retina under photopic conditions , 1982, Vision Research.

[21]  London,et al.  Light, Colour and Vision , 1969 .

[22]  R. M. Boynton,et al.  Comparison of four methods of heterochromatic photometry. , 1972, Journal of the Optical Society of America.

[23]  K. Mullen,et al.  Colour vision as a post-receptoral specialization of the central visual field , 1991, Vision Research.

[24]  R. M. Boynton,et al.  Hue-Wavelength Relation Measured by Color-Naming Method for Three Retinal Locations , 1964, Science.

[25]  B. Drum Short-wavelength cones contribute to achromatic sensitivity , 1983, Vision Research.

[26]  R. M. Boynton,et al.  Role of the blue mechanism in wavelength discrimination , 1985, Vision Research.

[27]  M. Pirenne,et al.  Individual differences in night-vision efficiency. , 1958, Special report series (Medical Research Council (Great Britain)).

[28]  A. Valberg,et al.  Tritanopic purity-difference function to describe the properties of minimally distinct borders. , 1977, Journal of the Optical Society of America.

[29]  J. Cronly-Dillon,et al.  Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.

[30]  A. Adams,et al.  Short-wavelength-sensitive cones do not contribute to mesopic luminosity. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[31]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[32]  F. Delori,et al.  The macular pigment. II. Spatial distribution in primate retinas. , 1984, Investigative ophthalmology & visual science.

[33]  W. Stiles,et al.  Saturation of the Rod Mechanism of the Retina at High Levels of Stimulation , 1954 .

[34]  Brightness difference and its relation to the distinctness of a border. , 1971, Journal of the Optical Society of America.

[35]  P. Cavanagh,et al.  A minimum motion technique for judging equiluminance , 1983 .

[36]  P. Lennie,et al.  Shared pathways for rod and cone vision , 1986, Vision Research.

[37]  R. Watt,et al.  The recognition and representation of edge blur: Evidence for spatial primitives in human vision , 1983, Vision Research.

[38]  D. Jameson,et al.  Some Quantitative Aspects of an Opponent-Colors Theory. I. Chromatic Responses and Spectral Saturation , 1955 .

[39]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Glushko,et al.  Spectral sensitivity of long-wavelength-sensitive photoreceptors in dichromats determined by elimination of border percepts , 1978, Vision Research.

[41]  C. M. Cicerone,et al.  Opponent-process additivity--I: red-green equilibria. , 1974, Vision research.

[42]  B. Stabell,et al.  Absolute spectral sensitivity at different eccentricities. , 1981, Journal of the Optical Society of America.

[43]  I Abramov,et al.  Color vision in the peripheral retina. II. Hue and saturation. , 1977, Journal of the Optical Society of America.

[44]  S. Shioiri,et al.  COLOR PERIMETRY WITH A COLOR NAMING METHOD , 1985 .

[45]  R F Hess,et al.  How are spatial filters used in fovea and parafovea? , 1989, Journal of the Optical Society of America. A, Optics and image science.

[46]  R. M. Boynton,et al.  Chromatic border perception: The role of red- and green-sensitive cones , 1978, Vision Research.

[47]  D Kersten,et al.  Predictability and redundancy of natural images. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[48]  Thomas K. Kuyk,et al.  Spectral sensitivity of the peripheral retina to large and small stimuli , 1982, Vision Research.

[49]  Chromatic border distinctness: not an index of hue or saturation differences. , 1979, Journal of the Optical Society of America.

[50]  Additivity of yellow chromatic valence , 1986, Vision Research.

[51]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[52]  J. Koenderink,et al.  Sensitivity to spatiotemporal colour contrast in the peripheral visual field , 1983, Vision Research.

[53]  Y. Ejima,et al.  Spatial properties of red-green and yellow-blue perceptual opponent-color response , 1984, Vision Research.

[54]  Peter K. Kaiser,et al.  Sensation luminance: A new name to distinguish CIE luminance from luminance dependent on an individual's spectral sensitivity , 1988, Vision Research.

[55]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[56]  J. Moreland,et al.  Colour Perception with the Peripheral Retina , 1959 .

[57]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[58]  Y. Ejima,et al.  Red-green opponency in the detection and the perceptual hue cancellation , 1985, Vision Research.

[59]  B. Stabell,et al.  The effect of rod acitvity on colour matching functions , 1975, Vision Research.

[60]  G Wald,et al.  Color-Vision Mechanisms in the Peripheral Retinas of Normal and Dichromatic Observers , 1973, The Journal of general physiology.

[61]  J J Koenderink,et al.  Spectral sensitivity and wavelength discrimination of the human peripheral visual field. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[62]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[63]  C. D. Weert,et al.  Nonlinear codes for the yellow/blue mechanism , 1984, Vision Research.