Ghost imaging lidar via sparsity constraints

For remote sensing, high-resolution imaging techniques are helpful to catch more characteristic information of the target. We extend pseudo-thermal light ghost imaging to the area of remote imaging and propose a ghost imaging lidar system. The experimental results demonstrate that the real-space image of a target at about 1.0 km range with 20 mm resolution is achieved by ghost imaging via sparsity constraints (GISC) technique. The characters of GISC technique compared to the existing lidar systems are also discussed.

[1]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[2]  D. Donoho Superresolution via sparsity constraints , 1992 .

[3]  Philip Garcia,et al.  Nonscanned ladar imaging and applications , 1993, Defense, Security, and Sensing.

[4]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[5]  Enrico Brambilla,et al.  Correlated imaging, quantum and classical , 2004 .

[6]  A. Gatti,et al.  High-resolution ghost image and ghost diffraction experiments with thermal light. , 2005, Physical review letters.

[7]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[8]  Y. Shih,et al.  Two-photon "ghost" imaging with thermal light , 2004, 2005 Quantum Electronics and Laser Science Conference.

[9]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[10]  Bahram Javidi,et al.  Single-shot compressive imaging , 2007, SPIE Optics East.

[11]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[12]  Shensheng Han,et al.  Sub-wavelength Fourier-transform imaging of a pure-phase object with thermal light , 2007 .

[13]  Yanhua Shih,et al.  Ghost-imaging experiment by measuring reflected photons , 2008 .

[14]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[15]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[16]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[17]  Wenlin Gong,et al.  Super-resolution far-field ghost imaging via compressive sampling , 2009, 0911.4750.

[18]  O. Katz,et al.  Ghost imaging with a single detector , 2008, 0812.2633.

[19]  Wenlin Gong,et al.  Improving resolution by the second-order correlation of light fields. , 2009, Optics letters.

[20]  Wenlin Gong,et al.  Ghost “pinhole” imaging in Fraunhofer region , 2009 .

[21]  Jing Cheng Ghost imaging through turbulent atmosphere. , 2009, Optics express.

[22]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[23]  Wenlin Gong,et al.  Lens ghost imaging with thermal light: From the far field to the near field , 2010 .

[24]  Wenlin Gong,et al.  Correlated imaging through atmospheric turbulence , 2010, 1005.5011.

[25]  Y. Shih,et al.  Turbulence-free ghost imaging , 2011 .

[26]  J. Shapiro,et al.  Reflective ghost imaging through turbulence , 2011, 1110.0845.

[27]  Gregory A. Howland,et al.  Quantum ghost imaging through turbulence , 2011, 1102.3358.

[28]  Guihua Zeng,et al.  Periodic diffraction correlation imaging without a beam-splitter. , 2012, Optics express.

[29]  Wenlin Gong,et al.  Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints , 2012 .

[30]  Wenlin Gong,et al.  The influence of sparsity property of images on ghost imaging with thermal light. , 2012, Optics letters.