Approximation Schemes for Scheduling on Uniformly Related and Identical Parallel Machines

Abstract We give a polynomial approximation scheme for the problem of scheduling on uniformly related parallel machines for a large class of objective functions that depend only on the machine completion times, including minimizing the lp norm of the vector of completion times. This generalizes and simplifies many previous results in this area.

[1]  Leen Stougie,et al.  Multiprocessor scheduling with rejection , 1996, SODA '96.

[2]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[3]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[4]  Jirí Sgall,et al.  Approximation Schemes for Scheduling on Uniformly Related and Identical Parallel Machines , 1999, ESA.

[5]  Chak-Kuen Wong,et al.  Worst-Case Analysis of a Placement Algorithm Related to Storage Allocation , 1975, SIAM J. Comput..

[6]  Gerhard J. Woeginger,et al.  A polynomial-time approximation scheme for maximizing the minimum machine completion time , 1997, Oper. Res. Lett..

[7]  Noga Alon,et al.  Approximation schemes for scheduling , 1997, SODA '97.

[8]  David B. Shmoys,et al.  A Polynomial Approximation Scheme for Scheduling on Uniform Processors: Using the Dual Approximation Approach , 1988, SIAM J. Comput..

[9]  N. Alon,et al.  Approximation schemes for scheduling on parallel machines , 1998 .

[10]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[11]  Edward G. Coffman,et al.  Record Allocation for Minimizing Expected Retrieval Costs on Drum-Like Storage Devices , 1976, J. ACM.

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Yossi Azar,et al.  Approximation Schemes for Covering and Scheduling on Related Machines , 1998, APPROX.

[14]  Gerhard J. Woeginger,et al.  The exact LPT-bound for maximizing the minimum completion time , 1992, Oper. Res. Lett..

[15]  D. K. Friesen,et al.  Analysis of Greedy Solutions for a Replacement Part Sequencing Problem , 1981, Math. Oper. Res..