Rank Analysis of Cubic Multivariate Cryptosystems
暂无分享,去创建一个
John Baena | Daniel Cabarcas | Javier A. Verbel | Daniel E. Escudero | Karan Khathuria | Daniel Cabarcas | Karan Khathuria | John Baena
[1] Christophe Petit,et al. First fall degree and Weil descent , 2014, Finite Fields Their Appl..
[2] H. Niederreiter,et al. Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .
[3] Louis Goubin,et al. QUARTZ, 128-Bit Long Digital Signatures , 2001, CT-RSA.
[4] B. Salvy,et al. Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems , 2022 .
[5] Daniel Smith-Tone,et al. Improved Attacks for Characteristic-2 Parameters of the Cubic ABC Simple Matrix Encryption Scheme , 2017, PQCrypto.
[6] Jeffrey Shallit,et al. The Computational Complexity of Some Problems of Linear Algebra , 1996 .
[7] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[8] S. Friedland,et al. Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors , 2013, 1311.1561.
[9] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[10] Luk Bettale,et al. Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic , 2012, Designs, Codes and Cryptography.
[11] Marc Stevens,et al. M4GB: An Efficient Gröbner-Basis Algorithm , 2017, ISSAC.
[12] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[13] Bo-Yin Yang,et al. Building Secure Tame-like Multivariate Public-Key Cryptosystems: The New TTS , 2005, ACISP.
[14] Daniel Smith-Tone,et al. Key Recovery Attack on the Cubic ABC Simple Matrix Multivariate Encryption Scheme , 2016, SAC.
[15] Louis Goubin,et al. Cryptanalysis of the TTM Cryptosystem , 2000, ASIACRYPT.
[16] Jintai Ding,et al. The Cubic Simple Matrix Encryption Scheme , 2014, PQCrypto.
[17] Ludovic Perret,et al. Cryptanalysis of MinRank , 2008, CRYPTO.
[18] Daniel Panario,et al. Computing Gröbner bases associated with lattices , 2016, Adv. Math. Commun..
[19] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .
[20] Daniel Panario,et al. Gröbner bases for lattices and an algebraic decoding algorithm , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[21] Jintai Ding,et al. Inverting HFE Systems Is Quasi-Polynomial for All Fields , 2011, CRYPTO.
[22] T. Howell,et al. Global properties of tensor rank , 1978 .
[23] Jintai Ding,et al. ZHFE, a New Multivariate Public Key Encryption Scheme , 2014, PQCrypto.
[24] Hideki Imai,et al. Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption , 1988, EUROCRYPT.
[25] Shmuel Friedland,et al. Remarks on the Symmetric Rank of Symmetric Tensors , 2015, SIAM J. Matrix Anal. Appl..
[26] Daniel Smith-Tone,et al. An Asymptotically Optimal Structural Attack on the ABC Multivariate Encryption Scheme , 2014, PQCrypto.
[27] Yasufumi Hashimoto,et al. Multivariate Public Key Cryptosystems , 2017, CREST Crypto-Math Project.
[28] Mohab Safey El Din,et al. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..
[29] Bo-Yin Yang,et al. Odd-Char Multivariate Hidden Field Equations , 2008, IACR Cryptol. ePrint Arch..
[30] Jacques Patarin,et al. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms , 1996, EUROCRYPT.
[31] J. Landsberg. Tensors: Geometry and Applications , 2011 .
[32] Pierre-Jean Spaenlehauer,et al. Solving multi-homogeneous and determinantal systems: algorithms, complexity, applications. (Résolution de systèmes multi-homogènes et déterminantiels : algorithmes, complexité, applications) , 2012 .
[33] Adi Shamir,et al. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.