High-Speed Quantum Random Number Generation Using CMOS Photon Counting Detectors

Optical quantum random number generators (QRNGs) are a special class of physical random data sources, whose randomness is established on elementary quantum optics processes. We present a QRNG based on a CMOS chip which overcomes the limitations of the commonly used optical QRNG and which achieves a random bit generation rate up to 200 Mb/s. The CMOS chip is based on an array of single-photon avalanche diodes (SPADs) and digital counters. We prove the absolute randomness of the generated random data through statistical test suites and even more stringent correlation and bias tests applied to 32 Gbit streams. The QRNG passes all tests; hence, it proves to be one of the fastest and more reliable CMOS optical QRNGs currently available.

[1]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[2]  A. Tosi,et al.  Principles and features of Single Photon Avalanche Diode Arrays , 2007 .

[3]  Koichi Ishii,et al.  Randomness and Genuine Random Number Generator With Self-testing Functions , 2010 .

[4]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[5]  Michael A Wayne,et al.  Low-bias high-speed quantum random number generator via shaped optical pulses. , 2010, Optics express.

[6]  Caitlin R. S. Williams,et al.  Fast physical random number generator using amplified spontaneous emission. , 2010, Optics express.

[7]  Alberto Tosi,et al.  Electronics for single photon avalanche diode arrays , 2007 .

[8]  Franco Zappa,et al.  Variable-load quenching circuit for single-photon avalanche diodes. , 2008, Optics express.

[9]  Berk Sunar,et al.  A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks , 2007, IEEE Transactions on Computers.

[10]  G. Marsaglia,et al.  Monkey tests for random number generators , 1993 .

[11]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[12]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[13]  A Tosi,et al.  Fully-integrated CMOS single photon counter. , 2007, Optics express.

[14]  S. Cova,et al.  A process and deep level evaluation tool: afterpulsing in avalanche junctions , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[15]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  M. Wahl,et al.  An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements , 2011 .

[17]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[18]  P. Boyle Options: A Monte Carlo approach , 1977 .

[19]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[20]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[21]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[22]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[23]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.