Metric tensors for the interpolation error and its gradient in Lp norm
暂无分享,去创建一个
Hehu Xie | Xiaobo Yin | Hehu Xie | Xiaobo Yin
[1] R. K. Smith,et al. Mesh Smoothing Using A Posteriori Error Estimates , 1997 .
[2] Robert D. Russell,et al. Adaptive Moving Mesh Methods , 2010 .
[3] O. C. Zienkiewicz,et al. Automatic directional refinement in adaptive analysis of compressible flows , 1994 .
[4] Pingwen Zhang,et al. Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .
[5] J. Brackbill,et al. Adaptive zoning for singular problems in two dimensions , 1982 .
[6] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[7] T. Apel,et al. Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .
[8] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[9] Ashraf El-Hamalawi,et al. Mesh Generation – Application to Finite Elements , 2001 .
[10] R. B. Simpson,et al. On optimal interpolation triangle incidences , 1989 .
[11] Martin Berzins. A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator , 1998, SIAM J. Sci. Comput..
[12] Gustavo C. Buscaglia,et al. Anisotropic mesh optimization and its application in adaptivity , 1997 .
[13] J. Remacle,et al. Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .
[14] Mark S. Shephard,et al. Boundary Layer Meshing for Viscous Flows in Complex Domains , 1998, IMR.
[15] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[16] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[17] Yunrong Zhu,et al. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION. , 2010, Communications in computational physics.
[18] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[19] P. Knupp,et al. Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods , 2002 .
[20] Guanghui Hu,et al. Moving finite element simulations for reaction-diffusion systems , 2012 .
[21] E. F. D’Azevedo,et al. Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..
[22] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[23] Weizhang Huang. Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .
[24] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .
[25] Lili Ju,et al. Adaptive Anisotropic Meshing For Steady Convection-Dominated Problems , 2009 .
[26] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[27] Kenji Shimada,et al. High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.
[28] S. SIAMJ.. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .
[29] Heyu Wang,et al. Simulating Two-phase Viscoelastic Flows Using Moving Finite Element Methods , 2009 .
[30] Ruo Li,et al. Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..
[31] Pingwen Zhang,et al. A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .
[32] Michel Fortin,et al. Anisotropic Mesh Adaptation: A Step Towards a Mesh-Independent and User-Independent CFD , 1998 .
[33] A. Dvinsky. Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .
[34] Yuri V. Vassilevski,et al. Minimization of gradient errors of piecewise linear interpolation on simplicial meshes , 2010 .
[35] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[36] Weizhang Huang,et al. Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems , 2010, 1008.0562.
[37] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[38] Ruo Li,et al. A General Moving Mesh Framework in 3D and its Application for Simulating the Mixture of Multi-Phase Flows , 2008 .
[39] Olivier-Pierre Jacquotte,et al. A mechanical model for a new grid generation method in computational fluid dynamics , 1988 .
[40] Yuri V. Vassilevski,et al. Adaptive generation of quasi-optimal tetrahedral meshes , 1999 .
[41] Frédéric Alauzet,et al. Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..
[42] Michel Fortin,et al. A directionally adaptive methodology using an edge-based error estimate on quadrilateral grids , 1996 .
[43] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[44] Ralf Kornhuber,et al. On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..
[45] Y. Vassilevski,et al. Hessian-free metric-based mesh adaptation via geometry of interpolation error , 2010 .
[46] P. George,et al. Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .
[47] Weiming Cao,et al. An Interpolation Error Estimate on Anisotropic Meshes in Rn and Optimal Metrics for Mesh Refinement , 2007, SIAM J. Numer. Anal..
[48] W. Rachowicz. An anisotropic h-adaptive finite element method for compressible Navier-Stokes equations , 1997 .