Metric tensors for the interpolation error and its gradient in Lp norm

A unified strategy to derive metric tensors in two and three spatial dimensions for the interpolation error and its gradient in L^p norm is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in the corresponding metric space, which is defined by a metric tensor being computed based on error estimates in different norms. Numerical results show that the corresponding convergence rates for several typical problems are almost optimal.

[1]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[2]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[3]  O. C. Zienkiewicz,et al.  Automatic directional refinement in adaptive analysis of compressible flows , 1994 .

[4]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[5]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[6]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[7]  T. Apel,et al.  Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .

[8]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[9]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[10]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[11]  Martin Berzins A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator , 1998, SIAM J. Sci. Comput..

[12]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[13]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[14]  Mark S. Shephard,et al.  Boundary Layer Meshing for Viscous Flows in Complex Domains , 1998, IMR.

[15]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[16]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[17]  Yunrong Zhu,et al.  ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION. , 2010, Communications in computational physics.

[18]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[19]  P. Knupp,et al.  Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods , 2002 .

[20]  Guanghui Hu,et al.  Moving finite element simulations for reaction-diffusion systems , 2012 .

[21]  E. F. D’Azevedo,et al.  Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..

[22]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[23]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[24]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[25]  Lili Ju,et al.  Adaptive Anisotropic Meshing For Steady Convection-Dominated Problems , 2009 .

[26]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[27]  Kenji Shimada,et al.  High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.

[28]  S. SIAMJ. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .

[29]  Heyu Wang,et al.  Simulating Two-phase Viscoelastic Flows Using Moving Finite Element Methods , 2009 .

[30]  Ruo Li,et al.  Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[31]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[32]  Michel Fortin,et al.  Anisotropic Mesh Adaptation: A Step Towards a Mesh-Independent and User-Independent CFD , 1998 .

[33]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[34]  Yuri V. Vassilevski,et al.  Minimization of gradient errors of piecewise linear interpolation on simplicial meshes , 2010 .

[35]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[36]  Weizhang Huang,et al.  Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems , 2010, 1008.0562.

[37]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[38]  Ruo Li,et al.  A General Moving Mesh Framework in 3D and its Application for Simulating the Mixture of Multi-Phase Flows , 2008 .

[39]  Olivier-Pierre Jacquotte,et al.  A mechanical model for a new grid generation method in computational fluid dynamics , 1988 .

[40]  Yuri V. Vassilevski,et al.  Adaptive generation of quasi-optimal tetrahedral meshes , 1999 .

[41]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[42]  Michel Fortin,et al.  A directionally adaptive methodology using an edge-based error estimate on quadrilateral grids , 1996 .

[43]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[44]  Ralf Kornhuber,et al.  On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..

[45]  Y. Vassilevski,et al.  Hessian-free metric-based mesh adaptation via geometry of interpolation error , 2010 .

[46]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[47]  Weiming Cao,et al.  An Interpolation Error Estimate on Anisotropic Meshes in Rn and Optimal Metrics for Mesh Refinement , 2007, SIAM J. Numer. Anal..

[48]  W. Rachowicz An anisotropic h-adaptive finite element method for compressible Navier-Stokes equations , 1997 .