An atomistic-based finite deformation membrane for crystalline films one atom thick

A general methodology to develop hyper-elastic membrane models equivalent to crystalline films one atom thick is presented. This membrane theory is used to study the mechanics of carbon nanotubes. The method relies on an extension of the Born based on the exponential map. The exponential map accounts for the fact that the lattice vectors of the crystal lie along the chords of the curved membrane, and consequently a tangent map like the standard Born rule is inadequate. In order to obtain practical models, the exponential map is locally approximated. Numerical simulations of a membrane for carbon nanotubes discretized by finite elements are given.

[1]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[2]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[3]  Mark J. Dyer,et al.  Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study , 2001 .

[4]  Bing-Lin Gu,et al.  First-principles study on morphology and mechanical properties of single-walled carbon nanotube , 2001 .

[5]  A. Maiti Mechanical deformation in carbon nanotubes – bent tubes vs tubes pushed by atomically sharp tips , 2000 .

[6]  Richard D. James,et al.  A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods , 2000 .

[7]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[8]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[9]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[10]  J. Bernholc,et al.  Theory of growth and mechanical properties of nanotubes , 1998 .

[11]  Robert E. Tuzun,et al.  Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures , 1998 .

[12]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[13]  Ronald E. Miller,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[14]  Z. Su,et al.  Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion , 1997, cond-mat/9704235.

[15]  J. Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[16]  G. Zanzotto,et al.  The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals , 1996 .

[17]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[18]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[19]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[20]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[21]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[22]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[23]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[24]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[25]  J W Martin,et al.  Many-body forces in metals and the Brugger elastic constants , 1975 .

[26]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[27]  R. Ruoff,et al.  Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy. , 2001, Physical review letters.

[28]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[29]  Frank Morgan,et al.  Riemannian geometry : a beginner's guide , 1998 .

[30]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .