Chicken egg white lysozyme exhibits antimicrobial activity against both Gram‐positive and Gram‐negative bacteria. Fractionation of clostripain‐digested lysozyme yielded a pentadecapeptide with antimicrobial activity but without muramidase activity. The peptide was isolated and its sequence found to be I‐V‐S‐D‐G‐N‐G‐M‐N‐A‐W‐V‐A‐W‐R (amino acids 98–112 of chicken egg white lysozyme). A synthesized peptide of identical sequence had the same bactericidal activity as the natural peptide. Replacement of Trp 108 with tyrosine significantly reduced the antibacterial capacity of the peptide. By replacement of Trp 111 with tyrosine the antibacterial activity was lost. Replacement of Asn 106 with the positively charged arginine strongly increased the antibacterial capacity of I‐V‐S‐D‐G‐N‐G‐M‐N‐A‐W‐V‐A‐W‐R. The peptide I‐V‐S‐D‐G‐N‐G‐M consisting of the eight amino acids of the N‐terminal side had no bactericidal properties, whereas the peptide N‐A‐W‐V‐A‐W‐R of the C‐terminal side retained some bactericidal activity. Replacement of asparagine 106 by arginine (R‐A‐W‐V‐A‐W‐R) increased the bactericidal activity considerably. The D enantiomer of R‐A‐W‐V‐A‐W‐R was as active as the L form against five of the tested bacteria, but substantially less active against Serratia marcescens, Micrococcus luteus,Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus lentus. For these bacterial species some stereospecific complementarity between receptor structures of the bacteria and the peptide can be assumed.